Arctic-alpine blockfields in northern Sweden: Quaternary not Neogene

Author:

Goodfellow B. W.,Stroeven A. P.ORCID,Fabel D.ORCID,Fredin O.,Derron M.-H.ORCID,Bintanja R.,Caffee M. W.

Abstract

Abstract. Slowly-eroding, blockfield-mantled, non-glacial surface remnants may serve as markers against which to determine Quaternary glacial erosion volumes in high latitude mountain settings. To investigate this potential utility of these surfaces, chemical weathering, erosion rates, and origins of mountain blockfields are investigated in northern Sweden. This is done, firstly, by assessing the intensity of regolith chemical weathering along altitudinal transects descending from three blockfield-mantled summits. Clay/silt ratios, secondary mineral assemblages determined through X-ray diffraction, and the presence of chemically weathered grains visible on scanning electron microscopy, in fine matrix samples collected from pits excavated along the transects are each used for this purpose. Secondly, erosion rates and total surface histories of two of the summits are inferred from concentrations of in situ-produced cosmogenic 10Be and 26Al in quartz at the blockfield surface. An interpretative model is adopted that includes temporal variations in nuclide production rates through surface burial by glacial ice and glacial isostasy-induced elevation changes of the blockfield surfaces. Together, our data indicate that these blockfields are not derived from remnants of intensely weathered Neogene weathering profiles, as is commonly considered. Evidence for this interpretation includes minor chemical weathering in each of the three examined blockfields, despite some differences according to slope position. In addition, average erosion rates of ∼16.2 mm ka−1 and ∼6.7 mm ka−1, calculated for two blockfield-mantled summits, are low but of sufficient magnitude to remove present blockfield mantles, of up to a few meters in thickness, within a late-Quaternary timeframe. Hence, blockfield mantles appear to be replenished by regolith formation through, primarily physical, weathering processes that have operated during the Quaternary. Erosion rates remain low enough, however, for blockfield-mantled, non-glacial surface remnants to provide reasonable landscape markers against which to contrast Quaternary erosion volumes in surrounding glacial landscape elements. The persistence of blockfield mantles over a number of glacial-interglacial cycles and an apparently low likelihood that they can re-establish on glacially eroded bedrock, also discounts the operation of a "glacial buzz-saw" on surface remnants that are presently perceived as non-glacial. These interpretations are tempered though by outstanding questions concerning the composition of preceding Neogene regoliths and why they have apparently been comprehensively removed from these remnant non-glacial surfaces. It remains possible that periglacial erosion of perhaps more intensely weathered Neogene regoliths was high during the Pliocene–Pleistocene transition to colder conditions and that periglacial processes reshaped non-glacial surface remnants largely before the formation of blockfield armours.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3