Auroral spectral estimation with wide-band color mosaic CCDs
-
Published:2014-06-11
Issue:1
Volume:3
Page:71-94
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Jackel B. J.ORCID, Unick C., Syrjäsuo M. T., Partamies N., Wild J. A.ORCID, Woodfield E. E.ORCID, McWhirter I., Kendall E., Spanswick E.
Abstract
Abstract. Optical aurora can be structured over a wide range of spatial and temporal scales with spectral features that depend on the energy of precipitating particles. Scientific studies typically combine data from multiple instruments that are individually optimized for spatial, spectral, or temporal resolution. One recent addition combines all-sky optics with color mosaic CCD (charge-coupled device) detectors that use a matrix of different wide-band micro-filters to produce an image with several (often three) color channels. These devices provide sequences of two dimensional multispectral luminosity with simultaneous exposure of all color channels allowing interchannel comparison even during periods with rapidly varying aurora. At present color auroral image data are primarily used for qualitative analysis. In this study a quantitative approach based on Backus–Gilbert linear inversion was used to better understand the effective spectral resolution of existing and proposed instruments. Two spectrally calibrated commercial detectors (Sony ICX285AQ and ICX429AKL) with very different color mosaics (RGB (red, green, blue) vs. CYGM (cyan, yellow, green, magenta)) were found to have very similar spectral resolution: three channels with FWHM (full-width half-maximum) ≈100 nm; a NIR (near infrared) blocking filter is important for stabilizing inversion of both three-channel configurations. Operating the ICX429AKL in a noninterlaced mode would improve spectral resolution and provide an additional near infrared channel. Transformations from arbitrary device channels to RGB are easily obtained through inversion. Simultaneous imaging of multiple auroral emissions may be achieved using a single-color camera with a triple-pass filter. Combinations of multiple cameras with simple filters should provide ~50 nm resolution across most of the visible spectrum. Performance of other instrument designs could be explored and compared using the same quantitative framework.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference32 articles.
1. Aster, R. C., Borchers, B., and Thurber, C. H.: Parameter estimation and inverse problems, Elsevier, Burlington, MA, USA, 2005. 2. Backus, G. and Gilbert, F.: The Resolving Power of Gross Earth Data, Geophys. J. Roy. Astronom. Soc., 16, 169–205, https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, 1968. 3. Backus, G. and Gilbert, F.: Uniqueness In The Inversion Of Inaccurate Gross Earth Data, Philos. Trans. Roy. Soc. London A, 266, 123–192, 1970. 4. Dahlgren, H., Ivchenko, N., Sullivan, J., Lanchester, B. S., Marklund, G., and Whiter, D.: Morphology and dynamics of aurora at fine scale: first results from the ASK instrument, Ann. Geophys., 26, 1041–1048, https://doi.org/10.5194/angeo-26-1041-2008, 2008. 5. Donovan, E. F., Mende, S., Jackel, B. J., Frey, H., Syrjäsuo, M., Voronkov, I. O., Trondsen, T., Peticolas, L., Angelopoulos, V., Harris, S., Greffen, M., and Connors, M.: The THEMIS all-sky imaging array – system design and initial results from the prototype imager, J. Atmos. Solar-Terrest. Phy., 68, 1472–1487, https://doi.org/10.1016/j.jastp.2005.03.027, 2006.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|