Diagnosing the causes of AMOC slowdown in a coupled model: a cautionary tale

Author:

Gérard JustinORCID,Crucifix MichelORCID

Abstract

Abstract. It is now established that the increase in atmospheric CO2 is likely to cause a weakening, or perhaps a collapse, of the Atlantic Meridional Overturning Circulation (AMOC). To investigate the mechanisms of this response in CMIP5 models, Levang and Schmitt (2020) have estimated the geostrophic streamfunction in these models offline and have decomposed the simulated changes into a contribution caused by the variations in temperature and salinity. They concluded that under a warming scenario, and for most models, the weakening of the AMOC is fundamentally driven by temperature anomalies, while freshwater forcing actually acts to stabilise it. However, given that both 3-D fields of ocean temperature and salinity are expected to respond to a forcing at the ocean surface, it is unclear to what extent the diagnostic is informative about the nature of the forcing. To clarify this question, we used the Earth system Model of Intermediate Complexity (EMIC), cGENIE, which is equipped with the C-GOLDSTEIN friction-geostrophic model. First, we reproduced the experiments simulating the Representative Concentration Pathway 8.5 (RCP8.5) warming scenario and observed that cGENIE behaves similarly to the majority of the CMIP5 models considered by Levang and Schmitt (2020), with the response dominated by the changes in the thermal structure of the ocean. Next, we considered hysteresis experiments associated with (1) water hosing and (2) CO2 increase and decrease. In all experiments, initial changes in the ocean streamfunction appear to be primarily caused by the changes in the temperature distribution, with variations in the 3-D distribution of salinity only partly compensating for the temperature contribution. These experiments also reveal limited sensitivity to changes in the ocean's salinity inventory. That the diagnostics behave similarly in CO2 and freshwater forcing scenarios suggests that the output of the diagnostic proposed in Levang and Schmitt (2020) is mainly determined by the internal structure of the ocean circulation rather than by the forcing applied to it. Our results illustrate the difficulty of inferring any information about the applied forcing from the thermal wind diagnostic and raise questions about the feasibility of designing a diagnostic or experiment that could identify which aspect of the forcing (thermal or haline) is driving the weakening of the AMOC.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3