Abstract
Abstract. Seeking for more accuracy and reliability, the hydrometeorological community has developed several tools to decipher the different sources of uncertainty in relevant modeling processes. Among them, the Ensemble Kalman Filter, multimodel approaches and meteorological ensemble forecasting proved to have the capability to improve upon deterministic hydrological forecast. This study aims at untangling the sources of uncertainty by studying the combination of these tools and assessing their contribution to the overall forecast quality. Each of these components is able to capture a certain aspect of the total uncertainty and improve the forecast at different stage in the forecasting process by using different means. Their combination outperforms any of the tool used solely. The EnKF is shown to contribute largely to the ensemble accuracy and dispersion, indicating that the initial condition uncertainty is dominant. However, it fails to maintain the required dispersion throughout the entire forecast horizon and needs to be supported by a multimodel approach to take into account structural uncertainty. Moreover, the multimodel approach contributes to improve the general forecasting performance and prevents from falling into the model selection pitfall since models differ strongly in their ability. Finally, the use of probabilistic meteorological forcing was found to contribute mostly to long lead time reliability. Particular attention needs to be paid to the combination of the tools, especially in the Ensemble Kalman Filter tuning to avoid overlapping in error deciphering.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献