Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability
Author:
Gelfan A.ORCID, Semenov V. A., Gusev E., Motovilov Y., Nasonova O., Krylenko I., Kovalev E.
Abstract
Abstract. An approach is proposed to assess hydrological simulation uncertainty originating from internal atmospheric variability. The latter is one of three major factors contributing to the uncertainty of simulated climate change projections (along with so-called "forcing" and "climate model" uncertainties). Importantly, the role of the internal atmospheric variability is the most visible over the spatial–temporal scales of water management in large river basins. The internal atmospheric variability is represented by large ensemble simulations (45 members) with the ECHAM5 atmospheric general circulation model. The ensemble simulations are performed using identical prescribed lower boundary conditions (observed sea surface temperature, SST, and sea ice concentration, SIC, for 1979–2012) and constant external forcing parameters but different initial conditions of the atmosphere. The ensemble of the bias-corrected ECHAM5-outputs as well as ensemble averaged ECHAM5-output are used as the distributed input for ECOMAG and SWAP hydrological models. The corresponding ensembles of runoff hydrographs are calculated for two large rivers of the Arctic basin: the Lena and the Northern Dvina rivers. A number of runoff statistics including the mean and the SD of the annual, monthly and daily runoff, as well as the annual runoff trend are assessed. The uncertainties of runoff statistics caused by the internal atmospheric variability are estimated. It is found that the uncertainty of the mean and SD of the runoff has a distinguished seasonal dependence with maximum during the periods of spring-summer snowmelt and summer-autumn rainfall floods. A noticeable non-linearity of the hydrological models' response to the ensemble ECHAM5 output is found most strongly expressed for the Northern Dvine River basin. It is shown that the averaging over ensemble members effectively filters stochastic term related to internal atmospheric variability. The simulated trends are close to normally distributed around ensemble mean value that indicates that a considerable portion of the observed trend can be externally driven.
Publisher
Copernicus GmbH
Reference46 articles.
1. Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A., and Mamassis, N.: A comparison of local and aggregated climate model outputs with observed data, Hydrolog. Sci. J., 55, 1094–1110, 2010. 2. Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (Eds.): Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2008. 3. Braun, M., Caya, D., Frigon, A., and Slivitzky, M.: Internal variability of Canadian RCM's hydrological variables at the basin scale in Quebec and Labrador, J. Hydrometeorol., 13, 443–462, 2012. 4. Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: a review, Hydrol. Process., 9, 251–290, 1995. 5. Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., and Kirono, D. G. C., and Viney, N. R.: Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modelling method, Water. Resour. Res., 45, W10414, https://doi.org/10.1029/2008WR007338, 2009.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|