Modeling 25 years of spatio-temporal surface water and inundation dynamics on large river basin scale using time series of earth observation data

Author:

Heimhuber V.ORCID,Tulbure M. G.,Broich M.

Abstract

Abstract. The usage of time series of earth observation (EO) data for analyzing and modeling surface water dynamics (SWD) across broad geographic regions provides important information for sustainable management and restoration of terrestrial surface water resources, which suffered alarming declines and deterioration globally. The main objective of this research was to model SWD from a unique validated Landsat-based time series (1986–2011) continuously through cycles of flooding and drying across a large and heterogeneous river basin, the Murray–Darling Basin (MDB) in Australia. We used dynamic linear regression to model remotely sensed SWD as a function of river flow and spatially explicit time series of soil moisture (SM), evapotranspiration (ET) and rainfall (P). To enable a consistent modeling approach across space, we modeled SWD separately for hydrologically distinct floodplain, floodplain-lake and non-floodplain areas within eco-hydrological zones and 10 km × 10 km grid cells. We applied this spatial modeling framework (SMF) to three sub-regions of the MDB, for which we quantified independently validated lag times between river gauges and each individual grid cell and identified the local combinations of variables that drive SWD. Based on these automatically quantified flow lag times and variable combinations, SWD on 233 (64 %) out of 363 floodplain grid cells were modeled with r2 ≥ 0.6. The contribution of P, ET and SM to the models' predictive performance differed among the three sub-regions, with the highest contributions in the least regulated and most arid sub-region. The SMF presented here is suitable for modeling SWD on finer spatial entities compared to most existing studies and applicable to other large and heterogeneous river basins across the world.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3