Trends in West African floods: a comparative analysis with rainfall and vegetation indices
Author:
Nka B. N.,Oudin L.,Karambiri H.,Paturel J. E.,Ribstein P.
Abstract
Abstract. After the drought of the 1970s in West Africa, the variability of rainfall and land use changes affected mostly flow, and recently flooding has been said to be an increasingly common occurrence throughout the whole of West Africa. These changes raised many questions about the impact of climate change on the flood regimes in West African countries. This paper investigates whether floods are becoming more frequent or more severe, and to what extent climate patterns have been responsible for these changes. We analyzed the trends in the floods occurring in 14 catchments within West Africa's main climate zone. The methodology includes two methods for sampling flood events, namely the AM (annual maximum) method and the POT (peak over threshold), and two perspectives of analysis are presented: long-term analysis based on two long flood time series, and a regional perspective involving 14 catchments with shorter series. The Mann–Kendall trend test and the Pettitt break test were used to assess time series stationarity. The trends detected in flood time series were compared to the rainfall index trends and vegetation indices using contingency tables, in order to identify the main driver of change in flood magnitude and flood frequency. The relation between the flood index and the physiographic index was evaluated through a success criterion and the Cramer criterion calculated from the contingency tables. The results point out the existence of trends in flood magnitude and flood frequency time series with two main patterns. Sahelian floods show increasing flood trends and some Sudanian catchments present decreasing flood trends. For the overall catchments studied, the maximum 5 day consecutive rainfall index (Rx5d) seems to follow the flood trend, while the NDVI indices do not show a significant link with the flood trends, meaning that this index has no impact in the behavior of floods in the region.
Publisher
Copernicus GmbH
Reference50 articles.
1. Abdul Aziz, O. I. and Burn, D. H.: Trends and variability in the hydrological regime of the Mackenzie River Basin, J. Hydrol., 319, 282–294, https://doi.org/10.1016/j.jhydrol.2005.06.039, 2006. 2. Albergel, J.: Sécheresse, désertification et ressources en eau de surface: application aux petits bassins du Burkina Faso, IAHS, Wallingford, 355–365, 1987. 3. Amani, A. and Nguetora, M.: Evidence d’une modification du regime hydrologique du fleuve Niger a Niamey. FRIEND 2002 – Regional Hydrology: Briging the Gap between Research and Practice (Porceedings of the fourth International FRIEND Conference held at Cape Town, South Africa) IAHS Publ. no 274, 449–457, 2002. 4. Amogu, O., Descroix, L., Yéro, K. S., Le Breton, E., Mamadou, I., Ali, A., Vischel, T., Bader, J.-C., Moussa, I. B., Gautier, E., Boubkraoui, S., and Belleudy, P.: Increasing river flows in the Sahel?, Water, 2, 170–199, https://doi.org/10.3390/w2020170, 2010. 5. Anyamba, A. and Tucker, C. J.: Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003, J. Arid Environ., 63, 596–614, 2005.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|