Use of cosmic ray neutron sensors for soil moisture monitoring in forests
Author:
Heidbüchel I.ORCID, Güntner A.ORCID, Blume T.ORCID
Abstract
Abstract. Cosmic ray neutron sensors (CRS) are a promising technique to measure soil moisture at intermediate scales. To convert neutron counts to average volumetric soil water content a simple calibration function can be used (the N0-calibration of Desilets et al., 2010). This calibration function is based on soil water content derived directly from soil samples taken within the footprint of the sensor. We installed a CRS in a mixed forest in the lowlands of north-eastern Germany and calibrated it 10 times throughout one calendar year. Each calibration with the N0-calibration function resulted in a different CRS soil moisture time series, with deviations of up to 0.12 m3 m-3 for individual values of soil water content. Also, many of the calibration efforts resulted in time series that could not be matched with independent in situ measurements of soil water content. We therefore suggest a new calibration function with a different shape that can vary from one location to another. A two-point calibration proved to be adequate to correctly define the shape of the new calibration function if the calibration points were taken during both dry and wet conditions covering at least 50 % of the total range of soil moisture. The best results were obtained when the soil samples used for calibration were linearly weighted as a function of depth in the soil profile and non-linearly weighted as a function of distance from the CRS, and when the depth-specific amount of soil organic matter and lattice water content was explicitly considered. The annual cycle of tree foliation was found to be a negligible factor for calibration because the variable hydrogen mass in the leaves was small compared to the hydrogen mass changes by soil moisture variations. Finally, we provide a best practice calibration guide for CRS in forested environments.
Publisher
Copernicus GmbH
Reference30 articles.
1. Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J., Qu, W., Montzka, C., and Vereecken, H.: Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods, J. Hydrol., 516, 231–244, https://doi.org/10.1016/j.jhydrol.2014.02.026, 2014. 2. Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J. A., Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030–2046, https://doi.org/10.1002/2014WR016443, 2015. 3. Bachelet, F., Balata, P., Dyring, E., and Iucci, N.: Attenuation coefficients of the cosmic-ray nucleonic component in the lower atmosphere, Il Nuovo Cimento, 35, 23–35, https://doi.org/10.1007/BF02734822, 1965. 4. Baroni, G. and Oswald, S.: A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing, J. Hydrol., 525, 264–276, https://doi.org/10.1016/j.jhydrol.2015.03.053, 2015. 5. Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., and Vereecken, H.: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: the worst case scenario, Water Resour. Res., 49, 5778–5791, https://doi.org/10.1002/wrcr.20463, 2013.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|