Spatial and temporal runoff processes in the degraded Ethiopian Highlands: the Anjeni Watershed

Author:

Bayabil H. K.ORCID,Tebebu T. Y.,Stoof C. R.,Steenhuis T. S.ORCID

Abstract

Abstract. As runoff mechanisms in the Ethiopian highlands are not well understood, performance of many soil and water conservation measures is inadequate because of ineffective placement outside the major runoff source areas. To improve understanding of the runoff generating mechanisms in these highlands, we monitored runoff volumes from 24 runoff plots constructed in the 113 ha Anjeni watershed, where historic data of rainfall and stream discharge were available. In addition, we assessed the effectiveness of charcoal and crop rooting depth in reducing runoff, in which we compared the effect of lupine (a deep-rooted crop) to that of barley. Daily rainfall, surface runoff, and root zone moisture content were measured during the monsoon seasons of 2012 and 2013 (with all plots being tilled in 2012, but only barley plots in 2013). In addition, long-term surface runoff (from four plots) and outlet discharge data from the research site (1989–1993) was analyzed and compared with our observations. Results showed that the degree of soil degradation and soil disturbance (tillage) were significant factors affecting plot runoff responses. As expected runoff was greater from more degraded soils, while tilled plots had greater soil storage and thus less runoff. Overall, barley plots produced significantly less runoff than lupine plots. Specifically, considerable difference was observed for smaller rainfall events (ca. <20 mm) in 2013, when lupine plots (non-tilled) resulted in greater runoff than barley plots (tilled). This suggests that plot rainfall–runoff relationships are greatly affected by root-zone storage, which is directly affected by soil degradation and tillage practices.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3