Trehalose can effectively protect sheep epididymis epithelial cells from oxidative stress
-
Published:2021-08-18
Issue:2
Volume:64
Page:335-343
-
ISSN:2363-9822
-
Container-title:Archives Animal Breeding
-
language:en
-
Short-container-title:Arch. Anim. Breed.
Author:
Luan ZhaojinORCID, Fan Xiaomei, Zhao Yongchao, Song Huizi, Du Wei, Xu Jiaoxia, Wang Zhaochen, Zhang Wenguang, Zhang Jiaxin
Abstract
Abstract. Trehalose, a naturally nontoxic disaccharide that does not exist in
mammals, stabilizes cell membrane integrity under oxidative stress
conditions, the mechanism of which is still unclear. Here, we analyzed the
effects of trehalose on sheep epididymis epithelial cell (EEC)
proliferation and its possible mechanisms. To study the effect of trehalose
on EECs, EECs were isolated from testes of 12-month-old sheep; cell counting kit-8 (CCK-8) was
used to measure the growth of the cells. Cell proliferation was evaluated by
assaying cell cycle and apoptosis, and RT-PCR was utilized to identify the
epididymal molecular markers glutathione peroxidase 5 (GPX5) and androgen receptor (AR). Next, reactive oxygen species (ROS)
content was evaluated by a dichloro-dihydro-fluorescein
diacetate (DCFH-DA) probe. Superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px) activities were evaluated by enzyme
chemistry methods, and GPX5 expression was evaluated by qRT-PCR and enzyme-linked immunosorbent assay (ELISA).
The results showed that 100 mM trehalose significantly improved the
proliferation potential of EECs, in which the cells could be serially
passaged 14 times with continued normal GPX5 and AR marker gene expression in vitro. The
trehalose can increase significantly a proportion of EECs in S phase
(P<0.01) and decrease significantly the apoptotic rate of EECs
(P<0.01) compared to the control. Moreover, the trehalose decreased
ROS significantly (P<0.01) and increased CAT
(P<0.01) and GSH-Px (P<0.05) activities significantly in EECs. GPX5 mRNA and
protein expression were also significantly upregulated in trehalose-treated
EECs (P<0.05 and P<0.01 respectively). Our study suggested
that exogenous trehalose exhibited antioxidant activity through increasing
the activities of CAT, GSH-Px, and the expression level of GPX5 and could be
employed to maintain vitality of sheep EECs during long-term in vitro culture.
Publisher
Copernicus GmbH
Reference38 articles.
1. Ateşşahin, A., Bucak, M. N., Tuncer, P. B., and
Kızıl, M.: Effects of anti-oxidant additives on microscopic and oxidative
parameters of Angora goat semen following the freeze–thawing process, Small
Ruminant Res., 77, 38–44, 2008. 2. Bieganski, R. M., Fowler, A., Morgan, J. R., and Toner, M.: Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose, Biotechnol Prog., 14, 615–620, 1998. 3. Brigelius-Flohé, R. and Maiorino, M.: Glutathione peroxidases, Biochim. Biophys. Acta, 1830, 3289–3303, 2013. 4. Büyükleblebici, S., Tuncer, P. B., Bucak, M. N., Eken, A.,
Sarıözkan, S., Taşdemir, U., and Endirlik, B. U.: Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results, Anim. Reprod. Sci., 150, 77–83, 2014. 5. Bucak, M. N., Ateşşahin, A., Varişli, O., Yüce, A., Tekin, N., and Akçay, A.: The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: Microscopic and oxidative stress parameters after freeze–thawing process, Theriogenology, 67, 1060–1067, 2007.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|