Effects of eustatic sea-level change, ocean dynamics, and iron fertilization on atmospheric <i>p</i>CO<sub>2</sub> and seawater composition over the last 130 000 years
Author:
Wallmann K.,Schneider B.,Sarnthein M.
Abstract
Abstract. We developed and employed an earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus, reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, they led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to reduced deep ocean dynamics, a shoaling of Atlantic meridional overturning circulation, and a rise in iron fertilization. The increased transit time of deep waters in the glacial ocean led to significant 14C depletions with respect to the atmosphere. The deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in dust-borne iron discharge to the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 was dominated by fast changes in ocean dynamics and reduced dust deposition whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.
Publisher
Copernicus GmbH
Reference130 articles.
1. Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374, 2013. 2. Adkins, J. F. and Boyle, E. A.: Changing atmospheric Δ14C and the record of deep water paleoventilation ages, Paleoceanography, 12, 337–344, 1997. 3. Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.: Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios, Nature, 373, 506–509, 1995. 4. Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443–1448, 2009. 5. Archer, D. E., Morford, J. L., and Emerson, S. R.: A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains, Global Biogeochem. Cy., 16, 1017, https://doi.org/10.1029/2000GB001288, 2002.
|
|