Some aspects of the deep abyssal overflow between the middle and southern basins of the Caspian Sea

Author:

Babagoli Matikolaei Javad,Aliakbari Bidokhti Abbasali,Shiea Maryam

Abstract

Abstract. This study investigates the deep gravity current between the middle and southern Caspian Sea basins, caused by density difference of deep waters. Oceanographic data, numerical model and dynamic models are used to consider the structure of this Caspian Sea abyssal overflow. The CTD data are obtained from UNESCO, and the three-dimensional ocean model COHERENS results are used to study the abyssal currents in the southern basin of the Caspian Sea. The deep overflow is driven by the density difference mainly due to the temperature difference between the middle and southern basins especially in winter. For this reason, water sinks in high latitudes and after filling the middle basin it overflows into the southern basin. As the current passes through the Absheron Strait (or sill), we use an analytic model for the overflow gravity current with inertial effects, bottom friction and entrainment, to consider its structure. The dynamical characteristics of this deep baroclinic flow are investigated with different initial and boundary conditions. The results show that after time passes, the flow adjusts itself, moving as a deepening gravity driven topographically trapped current. This flow is considered for different seasons and its velocity and width are obtained. Because of the topography of the Southern Caspian basin, the flow is trapped after the sill; thus, another simple dynamical model of the overflow, based on potential vorticity similar to that of Bidokhti and Ezam (2009) but with the bottom friction and entrainment included, is used to find the horizontal extent of the outflow from the western coast. To estimate the changes of vorticity and potential vorticity of the flow over the Absheron sill, we use the method of Falcini and Salusti (2015), in this work, the effects of entrainment and friction are considered. Because of the importance of the overflow in deep water ventilation, a simple dynamical model of the boundary currents based on the shape of strait is used to estimate typical mass transport and flushing time which is found to be about 15 to 20 years for the southern basin of the Caspian Sea. This time scale is important for the possible effects on the ecosystem here of pollution due to oil exploration.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3