Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change

Author:

Myers-Pigg Allison N.,Kaiser Karl,Benner RonaldORCID,Ziegler Susan E.ORCID

Abstract

Abstract. The fate of soil organic carbon (SOC) in boreal forests is dependent on the integrative ecosystem response to climate change. For example, boreal forest productivity is often nitrogen (N) limited, and climate warming can enhance N cycling and primary productivity. However, the net effect of this feedback on the SOC reservoir and its longevity with climate change remain unclear due to difficulty in detecting small differences between large and variable carbon (C) fluxes needed to determine net changes in soil reservoirs. The diagenetic state of SOC – resulting from the physicochemical and biological transformations that alter the original biomolecular composition of detrital inputs to soil over time – is useful for tracing the net response of SOC at the timescales relevant to climate change not usually discernible from fluxes and stocks alone. Here, we test two hypotheses using a mesic boreal forest climate transect: (1) the SOC diagenetic state is maintained across this climosequence, and (2) the maintenance of the SOC diagenetic state is a consequence of coupled soil C and N cycling, signifying the role of enhanced N cycling supporting SOC inputs that maintain SOC stocks within the warmer-climate forests. Shifts in nonvascular to vascular plant inputs with climate observed in these and other boreal forests highlighted the need to carefully separate biogeochemical indicators of SOC source from those signifying diagenetic alteration. We thus evaluated and applied lignin biomarkers to assess the diagenetic alteration of SOC in these boreal forest organic soils and directly compared the lignin diagenetic state with that of soil organic nitrogen (SON) assessed through amino acid composition. The lignin diagenetic state remained constant across the climate transect, indicating a balance between the input and removal of lignin in these mesic boreal forests. When combined with previous knowledge of these forest ecosystems, including the diagenetic state of SON and direct measures of C fluxes and stocks, the results indicate a coupled increase in C and N cycling with climate warming that supports forest productivity and maintains SOC stocks. This balance could markedly shift as other factors begin to limit forest productivity (e.g., trace nutrients, water) with further climate change or affect forest nutrient allocation (e.g., forest age or compositional change). Further application of the approach presented here could be used to detect the limits of this and other ecosystem–climate feedbacks, by providing a tractable and parameterizable index of the lignin state across large spatial scales, necessary for ecosystem-scale parameterizations.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3