Dune belt restoration effectiveness assessed by UAV topographic surveys (northern Adriatic coast, Italy)

Author:

Faelga Regine AnneORCID,Cantelli Luigi,Silvestri SoniaORCID,Giambastiani Beatrice Maria SoleORCID

Abstract

Abstract. Unoccupied aerial vehicle (UAV) monitoring surveys are used to assess a dune restoration project in the protected natural area of the Bevano River mouth on the northern Adriatic coast (Ravenna, Italy). The impacts of the installed fences to aid dune development are quantified in terms of sand volume and vegetation cover changes over 5 years using a systematic data processing workflow based on structure-from-motion (SfM) photogrammetry and the Geomorphic Change Detection (GCD) toolset applied to two drone surveys in 2016 and 2021. Accuracy assessment is performed using statistical analysis between ground-truth and model elevation data. Results show that the fence proves to be effective in promoting recovery and growth since significant sand deposition was observed along the dune foot and front – a total area of 3799 m2, volume of 1109 m3, and average depositional depth of 0.29 m. Progradation of around 3–5 m of the foredune and embryo development were also evident. There was a decrease in blowout features of about 155 m2 due to increased deposition and vegetation colonization. There was also an average percent increase of 160 % on wave-induced driftwood and/or debris along the beach and of 9.6 % vegetation within the fence based on the cover analysis on selected transects. Erosion of around 1439 m2 is apparent mostly at the northern portion of the structure, which could be accounted for by the aerodynamic and morphodynamic conditions around the fence and its configuration to trap sediments and efficiency in doing so. Overall, dune fencing coupled with limiting debris cleaning along the protected coast was effective. The proposed workflow can aid in creating transferable guidelines to stakeholders in integrated coastal zone management (ICZM) implementation on Mediterranean low-lying sandy coasts.

Funder

European Education and Culture Executive Agency

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3