Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China

Author:

Zhao Qiuyue,Bi Jun,Liu Qian,Ling Zhenghao,Shen GuofengORCID,Chen Feng,Qiao Yuezhen,Li Chunyan,Ma ZongweiORCID

Abstract

Abstract. Understanding the composition, temporal variability and source apportionment of volatile organic compounds (VOCs) is necessary for determining effective control measures to minimize VOCs and their related photochemical pollution. To provide a comprehensive analysis of VOC sources and their contributions to ozone (O3) formation in the Yangtze River Delta (YRD) – a region experiencing the highest rates of industrial and economic development in China – we conducted a 1-year sampling exercise using a thermal desorption GC (gas chromatography) system for the first time at an urban site in Nanjing (JAES site). Alkanes were the dominant group at the JAES site, contributing ∼53 % to the observed total VOCs, followed by aromatics (∼17 %), acetylene (∼17 %) and alkenes (∼13 %). We identified seasonal variability in total VOCs (TVOCs) with maximum and minimum concentrations in winter and summer, respectively. Morning and evening peaks and a daytime trough were identified in the diurnal VOC patterns. We identified VOC sources using positive matrix factorization (PMF) and assessed their contributions to photochemical O3 formation by calculating the O3 formation potential (OFP) based on the mass concentrations and maximum incremental reactivities of VOCs. The PMF model identified five dominant VOC sources, with highest contributions from diesel vehicular exhaust (34±5 %), followed by gasoline vehicular exhaust (27±3 %), industrial emissions (19±2 %), fuel evaporation (15±2 %) and biogenic emissions (4±1 %). The results of the OFP calculation inferred that VOCs from industrial and vehicular emissions were found to be the dominant precursors for OFP, particularly the VOC species of xylenes, toluene and propene, and top priority should be given to these for the alleviation of photochemical smog. Our results therefore highlight that priority should be given to limited VOC sources and species for effective control of O3 formation in Nanjing.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3