Kinetics of the OH + NO<sub>2</sub> reaction: effect of water vapour and new parameterization for global modelling

Author:

Amedro Damien,Berasategui Matias,Bunkan Arne J. C.,Pozzer AndreaORCID,Lelieveld Jos,Crowley John N.ORCID

Abstract

Abstract. The effect of water vapour on the rate coefficient for the atmospherically important, termolecular reaction between OH and NO2 was determined in He–H2O (277, 291, and 332 K) and N2–H2O bath gases (292 K). Combining pulsed-laser photolytic generation of OH and its detection by laser-induced fluorescence (PLP-LIF) with in situ, optical measurement of both NO2 and H2O, we were able to show that (in contrast to previous investigations) the presence of H2O increases the rate coefficient significantly. We derive a rate coefficient for H2O bath gas at the low-pressure limit (k0H2O) of 15.9×10-30 cm6 molecule−2 s−1. This indicates that H2O is a more efficient collisional quencher (by a factor of ≈6) of the initially formed HO–NO2 association complex than N2, and it is a factor of ≈8 more efficient than O2. Ignoring the effect of water vapour will lead to an underestimation of the rate coefficient by up to 15 %, e.g. in the tropical boundary layer. Combining the new experimental results from this study with those from our previous paper in which we report rate coefficients obtained in N2 and O2 bath gases (Amedro et al., 2019), we derive a new parameterization for atmospheric modelling of the OH + NO2 reaction and use this in a chemical transport model (EMAC) to examine the impact of the new data on the global distribution of NO2, HNO3, and OH. Use of the new parameters (rather than those given in the IUPAC and NASA evaluations) results in significant changes in the HNO3∕NO2 ratio and NOx concentrations (the sign of which depends on which evaluation is used as reference). The model predicts the presence of HOONO (formed along with HNO3 in the title reaction) in concentrations similar to those of HO2NO2 at the tropical tropopause.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3