Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China

Author:

Fan Changhua,Chen Hao,Li Bo,Xiong Zhengqin

Abstract

Abstract. Biochar amendment to soil has been proposed as a strategy for sequestering carbon, mitigating climate change and enhancing crop productivity. However, few studies have compared the general effect of different feedstock-derived biochars on the various gaseous reactive nitrogen emissions (GNrEs) of N2O, NO and NH3 simultaneously across the typical vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was conducted to investigate the effects of two contrasting biochars, namely wheat straw biochar (Bw) and swine manure biochar (Bm) on GNrEs, vegetable yield and gaseous reactive nitrogen intensity (GNrI) in four typical soils which are representative of the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. Results showed that remarkable GNrE mitigation induced by biochar occurred in Anthrosol and Phaeozem, whereas enhancement of yield occurred in Cambisol and Phaeozem. Additionally, both biochars decreased GNrI through reducing N2O and NO emissions by 36.4–59.1 and 37.0–49.5 % for Bw (except for Cambisol), respectively, and by improving yield by 13.5–30.5 % for Bm (except for Acrisol and Anthrosol). Biochar amendments generally stimulated the NH3 emissions with greater enhancement from Bm than Bw. We can infer that the biochar's effects on the GNrEs and vegetable yield strongly depend on the attributes of the soil and biochar. Therefore, in order to achieve the maximum benefits under intensive greenhouse vegetable agriculture, both soil type and biochar characteristics should be seriously considered before conducting large-scale biochar applications.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3