Methane and nitrous oxide exchange over a managed hay meadow

Author:

Hörtnagl L.ORCID,Wohlfahrt G.ORCID

Abstract

Abstract. The methane (CH4) and nitrous oxide (N2O) exchange of a temperate mountain grassland near Neustift, Austria, was measured during 2010–2012 over a time period of 22 months using the eddy covariance method. Exchange rates of both compounds at the site were low, with more than 95% of the half-hourly fluxes of CH4 and N2O ranging between ±10 and ±1 nmol m−2 s−1, respectively. The meadow acted as a sink for both compounds during certain time periods, but was a clear source of CH4 and N2O on an annual time scale. Therefore, both gases contributed to an increase of the global warming potential (GWP), effectively reducing the sink strength in terms of CO2-equivalents of the investigated grassland site. In 2011, our best guess estimate showed a net GHG sink of −32 g CO2-equ. m−2 yr−1 for the meadow, whereby 55% of the CO2 sink strength of −71 g CO2 m−2 yr−1 was offset by CH4/N2O emissions of 7/32 g CO2-equ. m−2 yr−1. When all data were pooled, the ancillary parameters explained 26/38% of observed CH4/N2O flux variability, and up to 62/75% on shorter time scales in-between management dates. In case of N2O fluxes, we found highest emissions at intermediate soil water contents and at soil temperatures close to zero or above 14 °C. In comparison to CO2, H2O and energy fluxes, the interpretation of CH4 and N2O exchange was challenging due to footprint heterogeneity regarding their sources and sinks, uncertainties regarding post-processing and quality control. Our results emphasize that CH4 and N2O fluxes over supposedly well-aerated and moderately fertilized soils cannot be neglected when evaluating the GHG impact of temperate managed grasslands.

Funder

Austrian Science Fund

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3