Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations

Author:

Tang G.,Zhu X.,Hu B.,Xin J.,Wang L.,Münkel C.ORCID,Mao G.ORCID,Wang Y.

Abstract

Abstract. The implementation of emission reductions during the 2014 Asia-Pacific Economic Cooperation (APEC) summit provides a valuable opportunity to study air pollution in Beijing. From 15 October to 30 November 2014, the height of the atmospheric mixing layer and the vertical attenuated backscattering coefficient profiles were observed online using a~lidar ceilometer. Compared with fine particulate matter (PM2.5) and aerosol optical depth (AOD) data, the attenuated backscattering coefficients measured by the lidar ceilometer were strongly correlated with the PM2.5 concentration and AOD (correlation coefficients of 0.89 and 0.86, respectively). This result demonstrated the reliability of the vertical distribution of particles measured by the lidar ceilometer. By classifying different degrees of air pollution based on visibility, we found that during the transition period of air pollution, which was affected by transport of southerly flows in the mixing layer, the attenuated backscattering coefficient from 0 to 1500 m was enhanced by approximately 1.4 Mm−1 sr−1 (140 %). During the polluted period, the attenuated backscattering coefficient from 0 to 300 m suddenly increased, and the coefficient near the surface peaked (approximately 14 Mm−1 sr−1); however, the attenuated backscattering coefficient from 300 to 900 m decreased gradually, and the average value from 0 to 1500 m decreased by 0.5 Mm−1sr−1 (20 %). The height of the mixing layer gradually decreased, and the ratio of CO / SO2 gradually increased, which indicate that the polluted period was dominated by local contribution. Due to the emission reductions during APEC (DAPEC), the concentration of PM2.5 decreased by 59.2 and 58.9 % and visibility improved by 70.2 and 56.0 % compared to before (BAPEC) and after APEC (AAPEC), respectively. The contribution of regional transport in DAPEC decreased by approximately 36 and 25 %, and the local contribution decreased by approximately 48 and 54 % compared to BAPEC and AAPEC, respectively. The most effective method of controlling air pollution in the Beijing area is to reduce regional emissions during the transition period and reduce local emissions during the polluted period.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3