Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014

Author:

Grazioli J.ORCID,Lloyd G.,Panziera L.,Hoyle C. R.ORCID,Connolly P. J.,Henneberger J.ORCID,Berne A.

Abstract

Abstract. This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during January and February 2014. The available observations include high-resolution polarimetric radar and in situ measurements of the ice-phase and liquid-phase components of clouds and precipitation. Radar-based hydrometeor classification suggests that riming is an important factor to favor an efficient growth of the precipitating mass and correlates with snow accumulation rates at ground level. The time steps during which rimed precipitation is dominant are analyzed in terms of temporal evolution and vertical structure. Snowfall identified as rimed often appears after a short time period during which the atmospheric conditions favor wind gusts and updrafts and supercooled liquid water (SLW) is available. When a turbulent atmospheric layer persists for several hours and ensures continuous SLW generation, riming can be sustained longer and large accumulations of snow at ground level can be generated. The microphysical interpretation and the meteorological situation associated with one such event are detailed in the paper. The vertical structure of polarimetric radar observations during intense snowfall classified as rimed shows a peculiar maximum of specific differential phase shift Kdp, associated with large number concentrations and riming of anisotropic crystals. Below this Kdp peak there is usually an enhancement in radar reflectivity ZH, proportional to the Kdp enhancement and interpreted as aggregation of ice crystals. These signatures seem to be recurring during intense snowfall.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3