Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles

Author:

Emersic C.,Connolly P. J.,Boult S.,Campana M.,Li Z.

Abstract

Abstract. Cloud chamber investigations into ice nucleation by mineral particles were compared with results from cold-stage droplet freezing experiments. Kaolinite, NX-illite, and K-feldspar were examined, and K-feldspar was revealed to be the most ice-active mineral particle sample, in agreement with recent cold-stage studies. The ice nucleation efficiencies, as quantified using the ice-active surface site density method, were found to be in agreement with previous studies for the lower temperatures; however, at higher temperatures the efficiency was between a factor of 10 and 1000 higher than those inferred from cold-stage experiments. Numerical process modelling of cloud formation during the experiments, using the cold-stage-derived parameterisations to initiate the ice phase, revealed the cold-stage-derived parameterisations to consistently underpredict the number of ice crystals relative to that observed. We suggest the reason for the underestimation of ice in the model is that the slope of the cold-stage-derived ice-active surface site density vs. temperature curves are too steep, which results in an underestimation of the number of ice crystals at higher temperatures during the expansion. These ice crystals suppress further freezing due to the Bergeron–Findeison process. A coagulation model was used to investigate the idea that the mineral particles coagulate in suspension. This model suggests that coagulation during the experiments may be sufficient to significantly remove the particles for the suspension by sedimentation or reduce the total particle surface area available for ice nucleation to take place. Aggregation was confirmed to take place in mineral suspensions using dynamic light-scattering measurements. However, it is not proven that aggregation of the mineral particles is able to reduce the surface area available for ice nucleation. The implication is that the mineral particles may be more important at nucleating ice at high temperatures than previously thought.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3