Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS)
-
Published:2015-02-20
Issue:4
Volume:15
Page:1823-1841
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Lee A. K. Y., Willis M. D.ORCID, Healy R. M., Onasch T. B.ORCID, Abbatt J. P. D.ORCID
Abstract
Abstract. Understanding the impact of atmospheric black carbon (BC)-containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we examine the mixing state of refractory BC (rBC) and other aerosol components in an urban environment (downtown Toronto) utilizing the Aerodyne soot particle aerosol mass spectrometer equipped with a light scattering module (LS-SP-AMS). k-means cluster analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant particle class is dominated by rBC mass spectral signals (C1+ to C5+) while the organic signals fall into a few major particle classes identified as hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), and cooking emission organic aerosol (COA). A gradual mixing is observed with small rBC particles only thinly coated by HOA (~ 28% by mass on average), while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic particle classes were not significantly associated with rBC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with vacuum aerodynamic diameter (dva) ranging from ~ 200 to 400 nm. The similar temporal profiles and mass spectral features of the organic classes identified by cluster analysis and the factors from a positive matrix factorization (PMF) analysis of the ensemble aerosol data set validate the interpretation of the PMF results.
Funder
Natural Sciences and Engineering Research Council of Canada Canada Foundation for Innovation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference64 articles.
1. Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 2. Allan, J., Delia, A., Coe, H., Bower, K., Alfarra, M., Jimenez, J., Middlebrook, A., Drewnick, F., Onasch, T., Canagaratna, M., Jayne, J., and Worsnop, D.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, 2004. 3. Baumgardner, D., Kok, G., and Raga, G.: Warming of the Arctic lower stratosphere by light absorbing particles, Geophys. Res. Lett., 31, L06117, 2004. 4. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J.Geophys. Res.-Atmos., 118, 5380–5552, 2013. 5. Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, 2007.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|