Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

Author:

Fadnavis S.ORCID,Semeniuk K.ORCID,Schultz M. G.ORCID,Kiefer M.,Mahajan A.ORCID,Pozzoli L.ORCID,Sonbawane S.

Abstract

Abstract. The Asian summer monsoon involves complex transport patterns with large-scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry–climate model ECHAM5–HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species peroxyacetyl nitrate (PAN), NOx and HNO3 from various monsoon regions, to the UTLS over southern Asia and vice versa. Simulated long-term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June–September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere (UT). Remote transport also occurs in the extratropical UT where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. Sensitivity experiments with ECHAM5–HAMMOZ for simultaneous NOx and non-methane volatile organic compounds (NMVOCs) emission change (−10 %) over ASM, NAM and WAM confirm similar transport. Our analysis shows that a 10 % change in Asian emissions transports ~ 5–30 ppt of PAN in the UTLS over Asia, ~ 1–10 ppt of PAN in the UTLS of northern subtropics and mid-latitudes, ~ 7–10 ppt of HNO3 and ~ 1–2 ppb of ozone in UT over Asia. Comparison of emission change over Asia, North America and Africa shows that the highest transport of HNO3 and ozone occurs in the UT over Asia and least over Africa. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOx. This also affects the distribution of PAN in the UTLS. Simulations with and without lightning show an increase in the concentrations of PAN (~ 40 %), HNO3 (75 %), NOx (70 %) and ozone (30 %) over the regions of convective transport. Lightning-induced production of these species is higher over equatorial Africa and America compared to the ASM region. This indicates that the contribution of anthropogenic emissions to PAN in the UTLS over the ASM is higher than that of lightning.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference94 articles.

1. Andreae, M. O., Artaxo, P., Fischer, H., Freitas, S. R., Grégoire, J.-M., Hansel, A., Hoor, P., Kormann, R., Krejci, R., Lange, L., Lelieveld, J., Lindinger, W., Longo, K., Peters, W., de Reus, M., Scheeren, B., Silva Dias, M. A. F., Ström, J., van Velthoven, P. F. J., and William, J.: Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region, Geophy. Res. Lett., 28, 951–958, 2001.

2. Arnold, F. and Hauck, G.: Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry, Nature, 315, 307–309, https://doi.org/10.1038/315307a0, 1985.

3. Barret, B., Ricaud, P., Mari, C., Attié, J.-L., Bousserez, N., Josse, B., Le Flochmoën, E., Livesey, N. J., Massart, S., Peuch, V.-H., Piacentini, A., Sauvage, B., Thouret, V., and Cammas, J.-P.: Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations, Atmos. Chem. Phys., 8, 3231–3246, https://doi.org/10.5194/acp-8-3231-2008, 2008.

4. Barret, B., Williams, J. E., Bouarar, I., Yang, X., Josse, B., Law, K., Pham, M., Le Flochmoën, E., Liousse, C., Peuch, V. H., Carver, G. D., Pyle, J. A., Sauvage, B., van Velthoven, P., Schlager, H., Mari, C., and Cammas, J.-P.: Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study, Atmos. Chem. Phys., 10, 5719–5738, https://doi.org/10.5194/acp-10-5719-2010, 2010.

5. Barth, M. C., Lee, J., Hodzic, A., Pfister, G., Skamarock, W. C., Worden, J., Wong, J., and Noone, D.: Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American Monsoon, Atmos. Chem. Phys., 12, 11003–11026, https://doi.org/10.5194/acp-12-11003-2012, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3