Responses of an abyssal meiobenthic community to short-term burial with crushed nodule particles in the south-east Pacific

Author:

Mevenkamp LisaORCID,Guilini Katja,Boetius AntjeORCID,De Grave Johan,Laforce Brecht,Vandenberghe Dimitri,Vincze Laszlo,Vanreusel Ann

Abstract

Abstract. Increasing industrial metal demands due to rapid technological developments may drive the prospection and exploitation of deep-sea mineral resources such as polymetallic nodules. To date, the potential environmental consequences of mining operations in the remote deep sea are poorly known. Experimental studies are scarce, especially with regard to the effect of sediment and nodule debris depositions as a consequence of seabed mining. To elucidate the potential effects of the deposition of crushed polymetallic nodule particles on abyssal meiobenthos communities, a short (11 d) in situ experiment at the seafloor of the Peru Basin in the south-east Pacific Ocean was conducted in 2015. We covered abyssal, soft sediment with approx. 2 cm of crushed nodule particles and sampled the sediment after 11 d of incubation at 4200 m water depth. Short-term ecological effects on the meiobenthos community were studied including changes in their composition and vertical distribution in the sediment as well as nematode genus composition. Additionally, copper burden in a few similar-sized but randomly selected nematodes was measured by means of micro X-ray fluorescence (µXRF). At the end of the experiment, 46±1 % of the total meiobenthos occurred in the added crushed nodule layer, while abundances decreased in the underlying 2 cm compared to the same depth interval in undisturbed sediments. Densities and community composition in the deeper 2–5 cm layers remained similar in covered and uncovered sediments. The migratory response into the added nodule material was particularly seen in polychaetes (73±14 %, relative abundance across all depth layers) copepods (71±6 %), nauplii (61±9 %) and nematodes (43±1 %). While the dominant nematode genera in the added nodule material did not differ from those in underlying layers or the undisturbed sediments, feeding type proportions in this layer were altered, with a 9 % decrease of non-selective deposit feeders and an 8 % increase in epistrate feeders. Nematode tissue copper burden did not show elevated copper toxicity resulting from burial with crushed nodule particles. Our results indicate that burial with a 2 cm layer of crushed nodule particles induces changes in the vertical structure of meiobenthos inside the sediment and an alteration of nematode feeding type proportions within a short time frame of 11 d, while nematode tissue copper burden remains unchanged. These findings considerably contribute to the understanding of the short-term responses of meiobenthos to physical disturbances in the deep sea.

Funder

Seventh Framework Programme

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3