Direct links between hygroscopicity and mixing state of ambient aerosols: estimating particle hygroscopicity from their single-particle mass spectra

Author:

Wang XinningORCID,Ye XingnanORCID,Chen JianminORCID,Wang Xiaofei,Yang Xin,Fu Tzung-MayORCID,Zhu Lei,Liu Chongxuan

Abstract

Abstract. Hygroscopicity plays crucial roles in determining aerosol optical properties and aging processes in the atmosphere. We investigated submicron aerosol hygroscopicity and composition by connecting an aerosol time-of-flight mass spectrometer (ATOFMS) in series to a hygroscopic tandem differential mobility analyzer (HTDMA), to characterize hygroscopicity and composition of ambient aerosols in Shanghai, China. The HTDMA–ATOFMS data suggested that particle types, including biomass burning, elemental carbon (EC), dust/ash, organic particles, cooking particles and sea salt, were shown to have distinct hygroscopicity distributions. Peak intensities in particle spectra were found to be nonlinearly correlated with hygroscopicity, and the correlations were variant with particle types. Based on the measured hygroscopicity–composition relations, we developed a statistical method to estimate ambient particle hygroscopicity just from their mass spectra. The method was applied to another ambient ATOFMS dataset sampled from 12 to 28 September 2012 in Shanghai. The estimated hygroscopicity suggested that ambient particles were present in three apparent hygroscopicity modes, whose growth factors peaked at 1.05, 1.42 and 1.60 (85 % relative humidity, RH). The estimated growth factor (GF) were divided into four bins as <1.1, 1.1–1.3, 1.3–1.5 and >1.5 to represent the nearly hydrophobic (NH), less-hygroscopic (LH), more-hygroscopic (MH) and sea salt (SS) modes. Number contributions of particle types to hygroscopicity modes showed consistent results with the HTDMA–ATOFMS experiment. Based on the combined information on particle composition, hygroscopicity, air mass back trajectories and ambient pollutant concentrations, we inferred that the NH, LH, MH and SS modes were characterized by primary organic aerosol (POA) ∕ EC, secondary organic aerosol (SOA), secondary inorganic aerosol (SIA) and salt compositions, respectively. The proposed method would provide additional information to the study of particle mixing states, source identification and visibility variation.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3