Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation
Author:
Povey A. C.ORCID, Grainger R. G.ORCID, Peters D. M., Agnew J. L.
Abstract
Abstract. Optimal estimation retrieval is a form of non-linear regression which determines the most probable circumstances that produced a given observation, weighted against any prior knowledge of the system. This paper applies the technique to the estimation of aerosol backscatter and extinction (or lidar ratio) from two-channel Raman lidar observations. It produces results from simulated and real data consistent with existing Raman lidar analyses and additionally returns a more rigorous estimate of its uncertainties while automatically selecting an appropriate resolution without the imposition of artificial constraints. Backscatter is retrieved at the instrument's native resolution with an uncertainty between 2 and 20%. Extinction is less well constrained, retrieved at a resolution of 0.1–1 km depending on the quality of the data. The uncertainty in extinction is >15%, in part due to the consideration of short one-minute integrations, but is comparable to fair estimates of the error when using the standard Raman lidar technique. The retrieval is then applied to several hours of observation on 19 April 2010 of ash from the Eyjafjallajökull eruption. A highly depolarizing ash layer is found with a lidar ratio of 20–30 sr, much lower values than observed by previous studies. This potentially indicates a growth of the particles after 12–24 h within the planetary boundary layer. A lower concentration of ash within a residual layer exhibited a backscatter of 10 Mm−1 sr−1 and lidar ratio of 40 sr.
Publisher
Copernicus GmbH
Reference64 articles.
1. Agnew, J. L.: Lidar and radar tropospheric profiling at Chilbolton Observatory, in: Sixth International Symposium on Tropospheric Profiling: Needs and Technologies, Leipzig, Germany, 14–20 September 2003, 151–153, 2003. 2. Agnew, J. and Wrench, C.: Chilbolton UV Raman Lidar Raw Data, STFC Chilbolton Observatory, Rutherford Appleton Laboratory, available at: http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_chobs, 2006–2010. 3. Althausen, D., Müller, D., Ansmann, A., Wandinger, U., Hube, H., Clauder, E., and Zörner, S.: Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Ocean. Tech., 17, 1469–1482, https://doi.org/10.1175/1520-0426(2000)0172.0.co;2, 2000. 4. Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. 5. Ansmann, A., Tesche, M., Gross, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over Central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010gl043809, 2010.
|
|