A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
-
Published:2024-04-23
Issue:4
Volume:18
Page:1911-1924
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Muñoz-Hermosilla José M., Otero JaimeORCID, De Andrés EvaORCID, Shahateet KaianORCID, Navarro FranciscoORCID, Pérez-Doña Iván
Abstract
Abstract. Frontal ablation is responsible for a large fraction of the mass loss from tidewater glaciers. The main contributors to frontal ablation are iceberg calving and submarine melting, with calving often being the largest. However, submarine melting, in addition to its direct contribution to mass loss, also promotes calving through the changes induced in the stress field at the glacier terminus, so both processes should be jointly analysed. Among the factors influencing submarine melting, the formation of a buoyant plume due to the emergence of fresh subglacial water at the glacier grounding line plays a key role. In this study we used Elmer/Ice to develop a 3D glacier dynamics model including calving and subglacial hydrology coupled with a line plume model to calculate the calving front position at every time step. We applied this model to the Hansbreen–Hansbukta glacier–fjord system in southern Spitsbergen, Svalbard, where a large set of data are available for both the glacier and the fjord from September 2008 to March 2011. We found that our 3D model reproduced the expected seasonal cycle of advance–retreat. Besides, the modelled front positions were in good agreement with the observed front positions at the central part of the calving front, with longitudinal differences, on average, below 15 m for the period from December 2009 to March 2011. But there were regions of the front, especially the eastern margin, that presented major differences.
Funder
Ministerio de Ciencia e Innovación
Publisher
Copernicus GmbH
Reference71 articles.
1. AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA), Arctic Monitoring and Assessment Programme (AMAP), Oslo, https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610 (last access: 24 January 2024), 2017. a 2. Amaral, T., Bartholomaus, T. C., and Enderlin, E. M.: Evaluation of iceberg calving models against observations from Greenland outlet glaciers, J. Geophys. Res.-Earth, 125, e2019JF005444, https://doi.org/10.1029/2019JF005444, 2020. a 3. Benn, D. I. and Åström, J.: Calving glaciers and ice shelves, Advances in Physics: X, 3, 1513819, https://doi.org/10.1080/23746149.2018.1513819, 2018. a 4. Benn, D. I., Warren, C. R., and Mottram, R. H.: “Calving laws”, “sliding laws” and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, https://doi.org/10.3189/172756407782871161, 2007. a 5. Benn, D. I., Cowtom, T., Todd, J., and Luckman, A.: Glacier calving in Greenland, Curr. Clim. Change Rep., 3, 282–290, https://doi.org/10.1007/s40641-017-0070-1, 2017. a
|
|