Firn air content changes on Antarctic ice shelves under three future warming scenarios
-
Published:2024-04-29
Issue:4
Volume:18
Page:1983-1999
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Veldhuijsen Sanne B. M.ORCID, van de Berg Willem JanORCID, Kuipers Munneke PeterORCID, van den Broeke Michiel R.ORCID
Abstract
Abstract. The Antarctic firn layer provides pore space in which an estimated 94 % to 96 % of the surface melt refreezes or is retained as liquid water. Future depletion of firn pore space by increased surface melt, densification and formation of low-permeability ice slabs can potentially lead to meltwater ponding, hydrofracturing and ice-shelf disintegration. Here, we investigate the 21st-century evolution of total firn air content (FAC) and accessible FAC (i.e. the pore space that meltwater can reach) across Antarctic ice shelves. We use the semi-empirical IMAU Firn Densification Model (IMAU-FDM) with an updated dynamical densification expression to cope with changing climate forcing. The firn model is forced by general circulation model output of the Community Earth System Model version 2 (CESM2) for three climate emission scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5), dynamically downscaled to a 27 km horizontal resolution by the Regional Atmospheric Climate Model version 2.3p2 (RACMO2.3p2). To estimate accessible FAC, we prescribe a relationship between ice-slab thickness and permeability. In our simulations, ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total FAC depletion (> 50 % decrease by 2100), even for low-emission (SSP1-2.6) and intermediate-emission (SSP2-4.5) scenarios. In the high-emission (SSP5-8.5) scenario in particular, the formation of ice slabs further reduces accessible FAC on ice shelves with low accumulation rates (current rates of < 500 mmw.e.yr-1), including many East Antarctic ice shelves and the Filchner–Ronne, Ross, Pine Island and Larsen C ice shelves. These results underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice-slab formation.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Copernicus GmbH
Reference64 articles.
1. Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res.-Earth, 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. a, b, c, d, e, f 2. Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a, b 3. Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., Zappa, C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.: Antarctic ice shelf potentially stabilized by export of meltwater in surface river, Nature, 544, 344–348, https://doi.org/10.1038/nature22048, 2017. a 4. Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018. a 5. Bréant, C., Martinerie, P., Orsi, A., Arnaud, L., and Landais, A.: Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities, Clim. Past, 13, 833–853, https://doi.org/10.5194/cp-13-833-2017, 2017. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|