SPECTRAL INFORMATION RETRIEVAL FOR SUB-PIXEL BUILDING EDGE DETECTION

Author:

Avbelj J.

Abstract

Abstract. Building extraction from imagery has been an active research area for decades. However, the precise building detection from hyperspectral (HSI) images solely is a less often addressed research question due to the low spatial resolution of data. The building boundaries are usually represented by spectrally mixed pixels, and classical edge detector algorithms fail to detect borders with sufficient completeness. The idea of the proposed method is to use fraction of materials in mixed pixels to derive weights for adjusting building boundaries. The building regions are detected using seeded region growing and merging in a HSI image; for the initial seed point selection the digital surface model (DSM) is used. Prior to region growing, the seeds are statistically tested for outliers on the basis of their spectral characteristics. Then, the border pixels of building regions are compared in spectrum to the seed points by calculating spectral dissimilarity. From this spectral dissimilarity the weights for weighted and constrained least squares (LS) adjustment are derived. We used the Spectral Angle Mapper (SAM) for spectral similarity measure, but the proposed boundary estimation method could benefit from soft classification or spectral unmixing results. The method was tested on a HSI image with spatial resolution of 4 m, and buildings of rectangular shape. The importance of constraints to the relations between building parts, e.g. perpendicularity is shown on example with a building with inner yards. The adjusted building boundaries are compared to the laser DSM, and have a relative accuracy of boundaries 1/4 of a pixel.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3