Analyzing near water surface penetration in laser bathymetry – A case study at the River Pielach

Author:

Mandlburger G.,Pfennigbauer M.,Pfeifer N.

Abstract

Abstract. Recent developments in sensor technology yielded a major progress in airborne laser bathymetry for capturing shallow water bodies. Modern topo-bathymetric small foot print laser scanners do no longer use the primary near infrared (NIR) signal (λ=1064 nm) but only emit and receive the frequency doubled green signal (λ= 532 nm). For calculating correct water depths accurate knowledge of the water surface (air-water-interface) is mandatory for obtaining accurate spot positions and water depths. Due to the ability of the green signal to penetrate water the first reflections do not exactly represent the water surface but, depending on environmental parameters like turbidity, a certain penetration into the water column can be observed. This raises the question if it is even feasible to determine correct water level heights from the green laser echoes only. In this article, therefore, the near water surface penetration properties of the green laser signal are analyzed based on a test flight of the River Pielach (Austria) carried out with Riegl's VQ-820-G (532 nm) and VQ-580 (1064 nm) scanners mounted on the same airborne platform. It is shown that within the study area the mean penetration into the water column is in the range of 10–25 cm compared to the NIR signal as reference. However, as the upper hull of the green water surface echoes coincides with the NIR signal with cm-precision, it is still possible to derive water surface models from the green laser echoes only via statistical analysis of aggregated neighboring echoes and robustly keep the underestimation of the water level below 6 cm. This especially holds for still and stationary flowing water bodies.

Publisher

Copernicus GmbH

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3