Reassembling 3D Thin Fragments of Unknown Geometry in Cultural Heritage

Author:

Zheng S. Y.,Huang R. Y.,Li J.,Wang Z.

Abstract

Abstract. Many fragile antiques had already been broken upon being discovered at archaeology sites. The fragments of these objects cannot be effectively interpreted and studied unless they are successfully reassembled. However, there still exists many problems in the reassembly procedure in existing methods, such as the numerical instabilities of curvature and torsion based methods, the limitation of geometric assumption, and the error accumulation of the pairwise matching approach, etc. Regarding these problems, this paper proposed an approach to match the fragments to each other for their original 3D reconstruction. Instead of the curvatures and torsions, the approach is based on establishing a local Cartesian coordinate at every point of the 3D contour curves. First of all, the 3D meshes of the fragments are acquired by a structure-light based method, with the corresponding 3D contour curves extracted from the outer boundaries. Then, the contour curves are matched and aligned to each other by estimating all the possible 3D rigid transformations of the curve pairs with our defined local Cartesian coordinates, and then the maximum likelihood rigid transformations are selected. Finally, a global refinement is introduced to adjust the alignment errors and improve the final reassembling accuracy. In addition, experiments with two groups of fragments suggest that this approach cannot only match and align fragments effectively, but also improve the accuracy significantly. Comparing with the original 3D model acquired before being broken, the final reassembling accuracy reaches 0.47 mm.

Publisher

Copernicus GmbH

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3