Author:
Azadbakht M.,Fraser C. S.,Zhang C.,Leach J.
Abstract
Abstract. The lack of noise reduction methods resistant to waveform distortion can hamper correct and accurate decomposition in the processing of full-waveform LiDAR data. This paper evaluates a time-domain method for smoothing and reducing the noise level in such data. The Savitzky-Golay (S-G) approach approximates and smooths data by taking advantage of fitting a polynomial of degree d, using local least-squares. As a consequence of the integration of this method with the Singular Value Decomposition (SVD) approach, and applying this filter on the singular vectors of the SVD, satisfactory denoising results can be obtained. The results of this SVD-based S-G approach have been evaluated using two different LiDAR datasets and also compared with those of other popular methods in terms of the degree of preservation of the moments of the signal and closeness to the noisy signal. The results indicate that the SVD-based S-G approach has superior performance in denoising full-waveform LiDAR data.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献