On data acquisition of moving objects via kinematic terrestrial laser scanning

Author:

Wujanz D.,Röckelein S.,Neitzel F.,Fröhlich C.

Abstract

Abstract. Terrestrial laser scanning (TLS) can be seen as an established method for geodetic data acquisition. Advantageous is its high achievable accuracy as well as its rapid, active and laminar sampling of the object space. However, problems occur if an object, the scanner itself or both are moving which is referred to as kinematic TLS (k-TLS). The cause of this issue is the sequential scanning principle of TLS which causes temporal offsets between measured points and hence describes a distinctive feature to photometric approaches. Due to this temporal shift movements of the scanner or an object lead to geometric falsification during data acquisition. If, however, one can determine current orientation and position of an object or the scanner at any point of time by applying additional sensor technology, geometrically correct and kinematic data acquisition can be derived. The contribution at hand presents a multi sensor system which applies a terrestrial laser scanner for acquisition of an object’s surface. In addition three tracking total stations are applied that monitor the object’s orientation and position within the coordinate system of the TLS. Influencing factors onto the geometric correction are the accuracy of the applied total stations for determination of six degrees of freedom (6dof) as well as the temporal synchronisation. At first an introduction into the problem domain is exemplified on a simple case. The system is then tested on a 2.5 m long ship model inside a research facility as well as outdoors on a 12 m long vessel. For the sake of assessment the results have been compared to statically acquired scans of the test objects, outside of the water respectively in position of rest, in order to derive reference models.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GBR: Working Theory and Signal Processing;Ground-Based Radar in Structural Design, Optimization, and Health Monitoring of Stationary and Rotating Structures;2023

2. Overview of GBR;Ground-Based Radar in Structural Design, Optimization, and Health Monitoring of Stationary and Rotating Structures;2023

3. Structural Damage Detection Methods;Ground-Based Radar in Structural Design, Optimization, and Health Monitoring of Stationary and Rotating Structures;2023

4. Introduction to 3-Tier SHM Framework;Ground-Based Radar in Structural Design, Optimization, and Health Monitoring of Stationary and Rotating Structures;2023

5. Mathematical description of aesthetic criteria for process planning and quality control of luxury yachts;Procedia CIRP;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3