KALMAN FILTER BASED RAILWAY TRACKING FROM MOBILE LIDAR DATA

Author:

Jwa Y.,Sonh G.

Abstract

Abstract. This study introduces a new method to reconstruct 3D model of railway tracks from a railway corridor scene captured by mobile LiDAR data. The proposed approach starts to approximate the orientation of railway track trajectory from LiDAR point clouds and extract a strip, which direction is orthogonal to the trajectory of railway track. Within the strip, a track region and its track points are detected based on the Bayesian decision process. Once the main track region is localized, rail head points are segmented based on the region growing approach from the detected track points and then initial track models are reconstructed using a third-degree polynomial function. Based on the initial modelling result, a potential track region with varying lengths is dynamically predicted and the model parameters are updated in the Kalman Filter framework. The key aspect is that the proposed approach is able to enhance the efficiency of the railway tracking process by reducing the complexity for detecting track points and reconstructing track models based on the use of the track model previously reconstructed. An evaluation of the proposed method is performed over an urban railway corridor area containing multiple railway track pairs.

Publisher

Copernicus GmbH

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Material Identification Method for Railway Structures Using 2D-LiDAR;2023 IEEE/ACIS 8th International Conference on Big Data, Cloud Computing, and Data Science (BCD);2023-12-14

2. PLANIMETRIC RAIL POSITIONING USING UAV PHOTOGRAMMETRY: TOWARDS AUTOMATED AND SAFE RAILWAY INFRASTRUCTURE MONITORING;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

3. Leveraging railway topology to automatically generate track geometric information models from airborne LiDAR data;Automation in Construction;2023-11

4. Point Cloud Analysis of Railway Infrastructure: A Systematic Literature Review;IEEE Access;2023

5. EFFECTIVE RAILROAD FRAGMENTATION AND INFRASTRUCTURE RECOGNITION BASED ON DENSE LIDAR POINT CLOUDS;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3