A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland

Author:

Wang WenshanORCID,Zender Charles S.ORCID,van As DirkORCID,Smeets Paul C. J. P.,van den Broeke Michiel R.ORCID

Abstract

Abstract. Surface melt and mass loss of the Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh-water storage. With few other regular meteorological observations available in this extreme environment, measurements from automatic weather stations (AWS) are the primary data source for studying surface energy budgets, and for validating satellite observations and model simulations. Station tilt, due to irregular surface melt, compaction and glacier dynamics, causes considerable biases in the AWS shortwave radiation measurements. In this study, we identify tilt-induced biases in the climatology of surface shortwave radiative flux and albedo, and retrospectively correct these by iterative application of solar geometric principles. We found, over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) networks, insolation on fewer than 40 % of clear days peaks within ±0.5 h of solar noon time, with the largest shift exceeding 3 h due to tilt. Hourly absolute biases in the magnitude of surface insolation can reach up to 200 W m−2, with respect to the well-understood clear-day insolation. We estimate the tilt angles and their directions based on the solar geometric relationship between the simulated insolation at a horizontal surface and the observed insolation by these tilted AWS under clear-sky conditions. Our adjustment reduces the root mean square error (RMSE) against references from both satellite observation and reanalysis by 16 W m−2 (24 %), and raises the correlation coefficients with them to above 0.95. Averaged over the whole Greenland Ice Sheet in the melt season, the adjustment in insolation to compensate station tilt is  ∼  11 W m−2, enough to melt 0.24 m of snow water equivalent. The adjusted diurnal cycles of albedo are smoother, with consistent semi-smiling patterns. The seasonal cycles and inter-annual variabilities of albedo agree better with previous studies. This tilt-corrected shortwave radiation data set derived using the Retrospective, Iterative, Geometry-Based (RIGB) method provide more accurate observations and validations for surface energy budgets studies on the Greenland Ice Sheet, including albedo variations, surface melt simulations and cloud radiative forcing estimates.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference45 articles.

1. AIRS Science Team/Joao Texeira: Aqua AIRS Level 2 Support Retrieval (AIRS+AMSU), version 006, NASA Goddard Earth Science Data and Information Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/AQUA/AIRS/DATA207, 2013.

2. Andersen, M., Stenseng, L., Skourup, H., Colgan, W., Khan, S., Kristensen, S., Andersen, S., Box, J., Ahlstrøm, A., Fettweis, X., and Forsberg, R.: Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011), Earth Planet. Sc. Lett., 409, 89–95, https://doi.org/10.1016/j.epsl.2014.10.015, 2015.

3. ARM (Atmospheric Radiation Measurement) Climate Research Facility: Data Quality Assessment for ARM Radiation Data (QCRAD1LONG). 2008-05-01 to 2013-05-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), Oak Ridge, Tennessee, USA, compiled by: Shi, Y. and Riihimaki, L., https://doi.org/10.5439/1027372, 1994.

4. Bais, A. F., Kazadzis, S., Balis, D., Zerefos, C. S., and Blumthaler, M.: Correcting global solar ultraviolet spectra recorded by a brewer spectroradiometer for its angular response error, Appl. Optics, 37, 6339–6344, https://doi.org/10.1364/AO.37.006339, 1998.

5. Biggs, W. W.: Principles of Radiation Measurement, in: Excerpted from: Advanced Agricultural Instrumentation, Proceedings from the NATO Advanced Study Institute on “Advanced Agricultural Instrumentation”, edited by: Gensler, W., Martinus Nijhof, Dordrecht, The Netherlands, 2 Edn., 1–17, https://doi.org/10.1016/B978-0-12-374271-1.00071-X, 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3