The diurnal and semidiurnal tides over Ascension Island (° S, 14° W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM

Author:

Davis R. N.,Du J.,Smith A. K.ORCID,Ward W. E.,Mitchell N. J.

Abstract

Abstract. Horizontal winds in the mesosphere have been measured over Ascension Island (8° S, 14° W) in the tropical mid-Atlantic region throughout the years 2002–2011. The observations were made by a very high frequency (VHF) meteor radar. The observations reveal the presence of atmospheric tides of large amplitude. The observations are analysed to characterise the seasonal and interannual variability of the diurnal and semidiurnal tides. Monthly-mean diurnal tidal amplitudes are found to reach values as large as 48 m s−1 in the meridional component and 41 m s−1 in the zonal. A semiannual seasonal variation is found in diurnal tidal amplitudes with amplitude maxima at the equinoxes and amplitude minima at the solstices. Diurnal tidal meridional vertical wavelengths are generally in the range 24–30 km. The diurnal zonal vertical wavelengths are similar to the meridional, except for the winter months when the zonal vertical wavelengths are much longer, occasionally exceeding 100 km. Semidiurnal amplitudes are observed to be significantly smaller than diurnal amplitudes. Semidiurnal vertical wavelengths range from 20 to more than 100 km. Our observations of tidal amplitudes and phases are compared with the predictions of the extended Canadian Middle Atmosphere Model (eCMAM) and the Whole Atmosphere Community Climate Model (WACCM). Both eCMAM and WACCM reproduce the trend for greater diurnal amplitudes in the meridional component than the zonal. However, eCMAM tends to overestimate meridional amplitudes, while WACCM underestimates both zonal and meridional amplitudes. Vertical wavelength predictions are generally good for both models; however, eCMAM predicts shorter diurnal zonal vertical wavelengths than are observed in winter, while WACCM predicts longer zonal vertical wavelengths than observed for the semidiurnal tide for most months. Semidiurnal amplitude predictions are generally good for both models. It is found that larger-than-average diurnal and semidiurnal tidal amplitudes occur when the stratospheric quasi-biennial oscillation (QBO) at 10 hPa is eastwards, and smaller-than-average amplitudes occur when it is westwards. Correlations between the amplitude perturbations and the El Niño Southern Oscillation are also found. The precise mechanism for these correlations remains unclear.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3