Key chemical NO<sub>x</sub> sink uncertainties and how they influence top-down emissions of nitrogen oxides

Author:

Stavrakou T.,Müller J.-F.,Boersma K. F.ORCID,van der A R. J.ORCID,Kurokawa J.,Ohara T.,Zhang Q.

Abstract

Abstract. Triggered by recent developments from laboratory and field studies regarding major NOx sink pathways in the troposphere, this study evaluates the influence of chemical uncertainties in NOx sinks for global NOx distributions calculated by the IMAGESv2 chemistry-transport model, and quantifies their significance for top-down NOx emission estimates. Our study focuses on five key chemical parameters believed to be of primary importance, more specifically, the rate of the reaction of NO2 with OH radicals, the newly identified HNO3-forming channel in the reaction of NO with HO2, the reactive uptake of N2O5 and HO2 by aerosols, and the regeneration of OH in the oxidation of isoprene. Sensitivity simulations are performed to estimate the impact of each source of uncertainty. The model calculations show that, although the NO2+OH reaction is the largest NOx sink globally accounting for ca. 60% of the total sink, the reactions contributing the most to the overall uncertainty are the formation of HNO3 in NO+HO2, leading to NOx column changes exceeding a factor of two over tropical regions, and the uptake of HO2 by aqueous aerosols, in particular over East and South Asia. Emission inversion experiments are carried out using model settings which either minimise (MINLOSS) or maximise (MAXLOSS) the total NOx sink, both constrained by one year of OMI NO2 column data from the DOMINO v2 KNMI algorithm. The choice of the model setup is found to have a major impact on the top-down flux estimates, with 75% higher emissions for MAXLOSS compared to the MINLOSS inversion globally. Even larger departures are found for soil NO (factor of 2) and lightning (1.8). The global anthropogenic source is better constrained (factor of 1.57) than the natural sources, except over South Asia where the combined uncertainty primarily associated to the NO+HO2 reaction in summer and HO2 uptake by aerosol in winter lead to top-down emission differences exceeding a factor of 2. Evaluation of the emission optimisation is performed against independent satellite observations from the SCIAMACHY sensor, with airborne NO2 measurements of the INTEX-A and INTEX-B campaigns, as well as with two new bottom-up inventories of anthropogenic emissions in Asia (REASv2) and China (MEIC). Neither the MINLOSS nor the MAXLOSS setup succeeds in providing the best possible match with all independent datasets. Whereas the minimum sink assumption leads to better agreement with aircraft NO2 profile measurements, consistent with the results of a previous analysis (Henderson et al., 2012), the same assumption leads to unrealistic features in the inferred distribution of emissions over China. Clearly, although our study addresses an important issue which was largely overlooked in previous inversion exercises, and demonstrates the strong influence of NOx loss uncertainties on top-down emission fluxes, additional processes need to be considered which could also influence the inferred source.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3