A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime

Author:

Herr AlexanderORCID,Merrin Linda E.ORCID,Mitchell Patrick J.,O'Grady Anthony P.,Holland Kate L.ORCID,Mount Richard E.,Post David A.ORCID,Pavey Chris R.,Sparrow Ashley D.

Abstract

Abstract. Describing and classifying a landscape for environmental impact and risk assessment purposes is a non-trivial challenge because this requires region-specific landscape classifications that cater for region-specific impacts. Assessing impacts on ecosystems from the extraction of water resources across large regions requires a causal link between landscape features and their water requirements. We present the rationale and implementation of an ecohydrological classification for regions where coal mine and coal seam gas developments may impact on water. Our classification provides the essential framework for modelling the potential impact of hydrological changes from future coal resource developments at the landscape level. We develop an attribute-based system that provides representations of the ecohydrological entities and their connection to landscape features and make use of existing broad-level classification schemes into an attribute-based system. We incorporate a rule set with prioritisation, which underpins risk modelling and makes the scheme resource efficient, where spatial landscape or ecosystem classification schemes, developed for other purposes, already exist. A consistent rule set and conceptualised landscape processes and functions allow for the combination of diverse data with existing classification schemes. This makes the classification transparent, repeatable and adjustable, should new data become available. We apply the approach in three geographically different regions, with widely disparate information sources, for the classification, and provide a detailed example of its application. We propose that it is widely applicable around the world for linking ecohydrology to environmental impacts.

Publisher

Copernicus GmbH

Reference76 articles.

1. Abella, S. R., Shelburne, V. B., and MacDonald, N. W.: Multifactor classification of forest landscape ecosystems of Jocassee Gorges, southern Appalachian Mountains, South Carolina, Can. J. Forest Res., 33, 1933–1946, https://doi.org/10.1139/x03-116, 2003.

2. Addicott, E., Neldner, V. J., and Ryan, T.: Aligning quantitative vegetation classification and landscape scale mapping: updating the classification approach of the Regional Ecosystem classification system used in Queensland, Aust. J. Bot., 69, 400–413, https://doi.org/10.1071/BT20108, 2021.

3. Aquatic Ecosystems Task Group: Aquatic Ecosystems Toolkit, Module 1: Aquatic Ecosystems Toolkit Guidance Paper, Australian Government Department of Sustainability, Environment, Water, Population and Communities, Canberra, https://www.awe.gov.au/water/publications/aquatic-ecosystems-toolkit-module-1-guidance-paper (last access: 2 May 2023), 2012.

4. Australian Bureau of Agricultural and Resource Economics and Sciences: Catchment Scale Land Use of Australia – 2014, Bioregional Assessment Source Dataset [data set], https://data.gov.au/data/dataset/f85d40da-12d7-40c1-a2e3-6cc533f7acb1 (last access: 2 May 2024), 2014.

5. Australian Government: Bioregional Assessment Program, https://data.gov.au/organisations/org-dga-69f37b4c-bdf0-4c85-bd56-82fa6d6b087a (last access: 3 May 2024), 2024a.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3