Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
-
Published:2024-03-13
Issue:5
Volume:28
Page:1191-1213
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Clark Stephanie R.,Lerat Julien,Perraud Jean-Michel,Fitch Peter
Abstract
Abstract. A deep learning model designed for time series predictions, the long short-term memory (LSTM) architecture, is regularly producing reliable results in local and regional rainfall–runoff applications around the world. Recent large-sample hydrology studies in North America and Europe have shown the LSTM model to successfully match conceptual model performance at a daily time step over hundreds of catchments. Here we investigate how these models perform in producing monthly runoff predictions in the relatively dry and variable conditions of the Australian continent. The monthly time step matches historic data availability and is also important for future water resources planning; however, it provides significantly smaller training datasets than daily time series. In this study, a continental-scale comparison of monthly deep learning (LSTM) predictions to conceptual rainfall–runoff (WAPABA model) predictions is performed on almost 500 catchments across Australia with performance results aggregated over a variety of catchment sizes, flow conditions, and hydrological record lengths. The study period covers a wet phase followed by a prolonged drought, introducing challenges for making predictions outside of known conditions – challenges that will intensify as climate change progresses. The results show that LSTM models matched or exceeded WAPABA prediction performance for more than two-thirds of the study catchments, the largest performance gains of LSTM versus WAPABA occurred in large catchments, the LSTMs struggled less to generalise than the WAPABA models (e.g. making predictions under new conditions), and catchments with few training observations due to the monthly time step did not demonstrate a clear benefit with either WAPABA or LSTM.
Publisher
Copernicus GmbH
Reference58 articles.
1. Abbas, A., Boithias, L., Pachepsky, Y., Kim, K., Chun, J. A., and Cho, K. H.: AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods, Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, 2022. 2. Australian Water Outlook: https://awo.bom.gov.au/, last access: February 2022. 3. Bennett, J. C., Wang, Q. J., Robertson, D. E., Schepen, A., Li, M., and Michael, K.: Assessment of an ensemble seasonal streamflow forecasting system for Australia, Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, 2017. 4. Choi, J., Lee, J., and Kim, S.: Utilization of the Long Short-Term Memory network for predicting streamflow in ungauged basins in Korea, Ecol. Eng., 182, 106699, https://doi.org/10.1016/j.ecoleng.2022.106699, 2022. 5. Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami, N., Knoben, W. J., Tang, G., Gharari, S., Freer, J. E., Whitfield, P. H., and Shook, K. R.: The abuse of popular performance metrics in hydrologic modeling, Water Resour. Res., 57, e2020WR029001, https://doi.org/10.1029/2020WR029001, 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|