Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
-
Published:2024-05-28
Issue:10
Volume:28
Page:2239-2258
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Liu Fengjing, Conklin Martha H.ORCID, Shaw Glenn D.
Abstract
Abstract. Mountain snowpack has been declining and more precipitation has fallen as rainfall than snowfall, particularly in the western US. Isotopic composition in stream water, springs, groundwater, and precipitation was examined to understand the impact of declining snowpack on hydrologic processes in the mid Merced River catchment (1873 km2), Sierra Nevada, California. Mean isotopic values in small tributaries (catchment area < 122 km2), rock glacier outflows, and groundwater from 2005 to 2008 were strongly correlated with mean catchment elevation (R2= 0.96 for δ2H, n= 16, p < 0.001), with an average isotopic lapse rate of −1.9 ‰ per 100 m for δ2H and −0.22 ‰ per 100 m for δ18O in meteoric water. The lapse rate did not change much over the seasons and was not strongly affected by isotopic fractionation. A catchment-characteristic isotopic value, representing the catchment arithmetic mean isotopic signature in meteoric water, was thus established for each sub-catchment based on the lapse rate to elucidate hydrometeorologic and hydrologic processes such as the duration and the magnitude of snowmelt events and elevational water sources of streamflow and groundwater for ungauged catchments. Compared to Tenaya Creek without water falls, the flow and flow duration of Yosemite Creek appear to be much more sensitive to seasonal temperature increases during the baseflow period due to a strong evaporation effect caused by waterfalls, suggesting a possible prolonged dry-up period of Yosemite Falls in the future. Groundwater in Yosemite Valley (∼ 900–1200 m) was recharged primarily from the upper snow–rain transition zone (2000–2500 m), suggesting its strong vulnerability to shifts in the snow–rain ratio. The information gained from this study helps advance our understanding of hydrologic responses to climate change in snowmelt-fed river systems.
Funder
California Energy Commission Michigan Technological University Directorate for Geosciences National Institute of Food and Agriculture
Publisher
Copernicus GmbH
Reference82 articles.
1. Adomako, D., Maloszewski, P., Stumpp, C., Osae, S., and Akiti, T. T.: Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana, Hydrolog. Sci. J., 55, 1405–1416, https://doi.org/10.1080/02626667.2010.527847, 2010. 2. Alley, W. M.: Tracking US groundwater – Reserves for the future?, Environment, 48, 10–25, https://doi.org/10.3200/ENVT.48.3.10-25, 2006. 3. Araguas-Araguas, L., Froehlich, K., and Roozanski, K.: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture, Hydrol. Process., 14, 1341–1355, 2000. 4. Balagizi, C. M., Kasereka, M. M., Cuoco, E., and Liotta, M.: Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa, Sci. Total Environ., 628–629, 1058–1078, https://doi.org/10.1016/j.scitotenv.2018.01.284, 2018. 5. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
|
|