Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada

Author:

Kompanizare MazdaORCID,Costa DiogoORCID,Macrae Merrin L.,Pomeroy John W.ORCID,Petrone Richard M.

Abstract

Abstract. Systematic tile drainage is used extensively in poorly drained agricultural lands to remove excess water and improve crop growth; however, tiles can also transfer nutrients from farmlands to downstream surface water bodies, leading to water quality problems. Thus, there is a need to simulate the hydrological behaviour of tile drains to understand the impacts of climate or land management change on agricultural surface and subsurface runoff. The Cold Regions Hydrological Model (CRHM) is a physically based, modular modelling system developed for cold regions. Here, a tile drainage module is developed for CRHM. A multi-variable, multi-criteria model performance evaluation strategy was deployed to examine the ability of the module to capture tile discharge under both winter and summer conditions (NSE > 0.29, RSR < 0.84 and PBias < 20 for tile flow and saturated storage simulations). Initial model simulations run at a 15 min interval did not satisfactorily represent tile discharge; however, model simulations improved when the time step was lengthened to hourly but also with the explicit representation of capillary rise for moisture interactions between the rooting zone and groundwater, demonstrating the significance of capillary rise above the saturated storage layer in the hydrology of tile drains in loam soils. Novel aspects of this module include the sub-daily time step, which is shorter than most existing models, and the use of field capacity and its corresponding pressure head to provide estimates of drainable water and the thickness of the capillary fringe, rather than using detailed soil retention curves that may not always be available. An additional novel aspect is the demonstration that flows in some tile drain systems can be better represented and simulated when related to shallow saturated storage dynamics.

Funder

Global Water Futures

Publisher

Copernicus GmbH

Reference100 articles.

1. Akis, R.: Simulation of Tile Drain Flows in an Alluvial Clayey Soil Using HYDRUS 1D, American-Eurasian J. Agric. and Environ. Sci., 16, 801–813, 2016.

2. Arheimer, B., Nilsson, J., and Lindstrom, G.: Experimenting with Coupled Hydro-Ecological Models to Explore Measure Plans and Water Quality Goals in a Semi-Enclosed Swedish Bay, Water, 7, 3906–3924, https://doi.org/10.3390/w7073906, 2015.

3. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, J. Am. Water. Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.

4. Badr, A. and Skaggs, R. W.: The effect of land development on the physical properties of some North Carolina organic soils, Paper 78-2537, Winter meeting of the American Society of Agricultural Engineers, Chicago, IL, American Society of Agricultural Engineers, St Joseph, MI, 1978.

5. Bleam, W.: Soil and Environmental Chemistry, 2nd Edition, eBook, Academic Press, ISBN 9780128041956, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3