Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods

Author:

Li Zongxing,Gui Juan,Cui Qiao,Xue Jian,Du Fa,Si Lanping

Abstract

Abstract. Amid global warming, the timely supplementation of soil water is crucial for the effective restoration and protection of the ecosystem. It is therefore of great importance to understand the temporal and spatial variations of soil water sources. The research collected 2451 samples of soil water, precipitation, river water, ground ice, supra-permafrost water, and glacier snow meltwater in June, August, and September 2020. The goal was to quantify the contribution of various water sources to soil water in the Three-Rivers Headwater Region (China) during different ablation periods. The findings revealed that precipitation, ground ice, and snow meltwater constituted approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. The snow is fully liquefied during the latter part of the ablation period, with precipitation contributing approximately 90 % and 94 % of soil water, respectively. These recharges also varied markedly with altitude and vegetation type. The study identified several influencing factors on soil water sources, including temperature, precipitation, vegetation, evapotranspiration, and the freeze–thaw cycle. However, soil water loss will further exacerbate vegetation degradation and pose a significant threat to the ecological security of the “Chinese Water Tower”. It emphasizes the importance of monitoring soil water, addressing vegetation degradation related to soil water loss, and determining reasonable soil and water conservation and vegetation restoration models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Reference46 articles.

1. Beyer, M., Hamutoko, J. T., Wanke, H., Gaj, M., and Koeniger, P.: Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models, J. Hydrol., 566, 122–136, https://doi.org/10.1016/j.jhydrol.2018.08.060, 2018.

2. Cao, R. F. and Jin, X. M.: Distribution Characteristics of Soil Moisture in the Three Rivers Headwaters Region, China, J. Environ. Inform. Lett., 6, 55–65, https://doi.org/10.3808/jeil.202100067, 2021.

3. Cao, W., Sheng, Y., Wu, J., Wang, S., and Ma, S.: Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River, Adv. Water Sci., 29, 1–10, https://doi.org/10.14042/j.cnki.32.1309.2018.01.001, 2018.

4. Chang, J., Wang, G. X., Gao, Y. Y., and Wang, Y. B.: Impacts of snow cover change on soil water-heat processes of swamp and meadow in Permafrost Region, Qinghai-Tibetan Plateau, Acta Ecolog. Sin., 32, 7289–7301, https://doi.org/10.11733/j.issn.1007-0435.2021.Z1.023, 2012.

5. Chen, G. Q., Zhu, C. X., Li, S. Y., Zhou, B. R., Li F., Cao X. Y., and Zhou, H. K.: Remote Sensing Model Constructions and Spatial-temporal Changes of Soil Moisture in the Three-River Headwaters Region, Acta Agrest. Sin., 29, 199–207, https://doi.org/10.11733/j.issn.1007-0435.2021.Z1.023, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3