High-resolution operational soil moisture monitoring for forests in central Germany

Author:

Vorobevskii IvanORCID,Luong Thi Thanh,Kronenberg Rico,Petzold Rainer

Abstract

Abstract. The forests of central Germany (Saxony, Saxony-Anhalt, and Thuringia) are vital components of the local ecosystems, the economy, and recreation. However, in recent years, these forests have faced significant challenges due to prolonged climate-change-induced droughts, causing water shortages, tree stress, and pest outbreaks. One of the key components of the forests' vitality and productivity is the availability of soil moisture. Given the anticipated increase in the frequency and severity of drought events, there is a growing demand for accurate and real-time soil moisture information. This underscores the need for development of an appropriate monitoring tool to make forest management strategies more effective. The article introduces an operational high-resolution soil moisture monitoring framework for the forests in central Germany. The key components of this system include the advanced LWF-BROOK90 1D water balance model, a large database of the National Federal Forest Inventory, high-resolution forest soil maps, real-time climate data from the German Meteorological Service, and a web information platform for the presentation of daily updated results. This system informs the public and empowers forest managers and other decision-makers to take targeted, local measures for sustainable forest management, aiding in both drought mitigation and long-term forest health in the face of climate change. The validation of the system using soil moisture measurements from 51 stations with various sensor depths (up to 100 cm) showed an overall good agreement (0.76 median Pearson correlation), which was found to be higher for deciduous rather than coniferous forests. Finally, the framework is discussed against the background of the main limitations of existing monitoring systems and how operational soil moisture measurements contribute to better interpretation of simulations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3