A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks

Author:

Liu JunORCID,Koch JulianORCID,Stisen SimonORCID,Troldborg LarsORCID,Schneider Raphael J. M.ORCID

Abstract

Abstract. Accurate streamflow estimation is essential for effective water resource management and adapting to extreme events in the face of changing climate conditions. Hydrological models have been the conventional approach for streamflow interpolation and extrapolation in time and space for the past few decades. However, their large-scale applications have encountered challenges, including issues related to efficiency, complex parameterization, and constrained performance. Deep learning methods, such as long short-term memory (LSTM) networks, have emerged as a promising and efficient approach for large-scale streamflow estimation. In this study, we have conducted a series of experiments to identify optimal hybrid modeling schemes to consolidate physically based models with LSTM aimed at enhancing streamflow estimation in Denmark. The results show that the hybrid modeling schemes outperformed the Danish National Water Resources Model (DKM) in both gauged and ungauged basins. While the standalone LSTM rainfall–runoff model outperformed DKM in many basins, it faced challenges when predicting the streamflow in groundwater-dependent catchments. A serial hybrid modeling scheme (LSTM-q), which used DKM outputs and climate forcings as dynamic inputs for LSTM training, demonstrated higher performance. LSTM-q improved the mean Nash–Sutcliffe efficiency (NSE) by 0.22 in gauged basins and 0.12 in ungauged basins compared to DKM. Similar accuracy improvements were achieved with alternative hybrid schemes, i.e., by predicting the residuals between DKM-simulated streamflow and observations using LSTM. Moreover, the developed hybrid models enhanced the accuracy of extreme events, which encourages the integration of hybrid models within an operational forecasting framework. This study highlights the advantages of synergizing existing physically based hydrological models (PBMs) with LSTM models, and the proposed hybrid schemes hold the potential to achieve high-quality large-scale streamflow estimations.

Publisher

Copernicus GmbH

Reference102 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3