Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake

Author:

Mesman Jorrit P.,Jiménez-Navarro Inmaculada C.,Ayala Ana I.ORCID,Senent-Aparicio JavierORCID,Trolle Dennis,Pierson Don C.ORCID

Abstract

Abstract. Lakes experience shifts in the timing of physical and biogeochemical events as a result of climate warming, and relative changes in the timing of events may have important ecological consequences. Spring, in particular, is a period in which many key processes that regulate the ecology and biogeochemistry of lakes occur and also a time that may experience significant changes under the influence of global warming. In this study, we used a coupled catchment–lake model forced by future climate projections to evaluate changes in the timing of spring discharge, ice-off, the spring phytoplankton peak, and the onset of stratification in a temperate mesotrophic lake. Although the model explained only part of the variation in these events, the overall patterns were simulated with little bias. All four events showed a clear trend towards earlier occurrence under climate warming, with ice cover tending to disappear at the end of the century in the most extreme climate scenario. Moreover, relative shifts in the timing of these springtime events also occurred, with the onset of stratification tending to advance more slowly than the other events and the spring phytoplankton peak and ice-off advancing faster in the most extreme climate scenario. The outcomes of this study stress the impact of climate change on the phenology of events in lakes and especially the relative shifts in timing during spring. This can have profound effects on food web dynamics as well as other regulatory processes and influence the lake for the remainder of the growing season.

Funder

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3