Abstract
Abstract. The NW Mediterranean coast is highly susceptible to the impacts of extreme rainstorms and coastal storms, which often lead to flash floods, coastal erosion, and flooding across a highly urbanised territory. Often, these storms occur simultaneously, resulting in compound events that intensify local impacts when they happen in the same location or spread impacts across the territory when they occur in different areas. These multivariate and spatially compound events present significant challenges for risk management, potentially overwhelming emergency services. In this study, we analysed the prevailing atmospheric conditions during various types of extreme episodes, aiming to create the first classification of synoptic weather patterns (SWPs) conducive to compound events involving heavy rainfall and storm waves in the Spanish NW Mediterranean. To achieve this, we developed a methodological framework that combines an objective synoptic classification method based on principal component analysis and k-means clustering with a Bayesian network. This methodology was applied to a dataset comprising 562 storm events recorded over 30 years, including 112 compound events. First, we used the framework to determine the optimal combination of domain size, classification variables, and number of clusters based on the synoptic skill to replicate local-scale values of daily rainfall and significant wave height. Subsequently, we identified SWPs associated with extreme compound events, which are often characterised by upper-level lows and trough structures in conjunction with Mediterranean cyclones, resulting in severe to extreme coastal storms combined with convective systems. The obtained classification demonstrated strong skill, with scores exceeding 0.4 when considering factors like seasonality or the North Atlantic Oscillation. These findings contribute to a broader understanding of compound terrestrial–maritime extreme events in the study area and have the potential to aid in the development of effective risk management strategies.
Funder
Ministerio de Ciencia e Innovación
Reference66 articles.
1. ACA: Avaluació preliminar del risc d'inundació al districte de conca fluvial de Catalunya. Annex 4: Anàlisi de les inundacions històriques, Agència Catalana de l'Aigua, 18 pp., 2011.
2. Amores, A., Marcos, M., Carrió, D. S., and Gómez-Pujol, L.: Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean, Nat. Hazards Earth Syst. Sci., 20, 1955–1968, https://doi.org/10.5194/nhess-20-1955-2020, 2020.
3. Aran, M., Peña, J. C., and Torà, M.: Atmospheric circulation patterns associated with hail events in Lleida (Catalonia), Atmos. Res., 100, 428–438, https://doi.org/10.1016/j.atmosres.2010.10.029, 2011.
4. Barbería, L., Amaro, J., Aran, M., and Llasat, M. C.: The role of different factors related to social impact of heavy rain events: considerations about the intensity thresholds in densely populated areas, Nat. Hazards Earth Syst. Sci., 14, 1843–1852, https://doi.org/10.5194/nhess-14-1843-2014, 2014.
5. Beck, C. and Philipp, A.: Evaluation and comparison of circulation type classifications for the European domain, Phys. Chem. Earth, 35, 374–387, 2010.