Developing water supply reservoir operating rules for large-scale hydrological modelling

Author:

Salwey SaskiaORCID,Coxon GemmaORCID,Pianosi FrancescaORCID,Lane RosannaORCID,Hutton Chris,Bliss Singer MichaelORCID,McMillan HilaryORCID,Freer Jim

Abstract

Abstract. Reservoirs are ubiquitous water infrastructure, providing functional capability to manage, and often mitigate, hydrological variability across space and time. The presence and operation of a reservoir control the downstream flow regime, such that in many locations understanding reservoir operations is crucial to understanding the hydrological functioning of a catchment. Despite many advances in modelling reservoir operations, inclusion of reservoirs in large-scale hydrological modelling remains challenging, particularly when the number of reservoirs is large and data access is limited. Here we design a set of simple reservoir operating rules (with only two calibrated parameters) focused on simulating small water supply reservoirs across large scales with various types of open-access data (i.e. catchment attributes and flows at downstream gauges). We integrate our rules into a national-scale hydrological model of Great Britain and compare hydrological simulations with and without the new reservoir component. Our simple reservoir operating rules significantly increase model performance in reservoir-impacted catchments, particularly when the rules are calibrated individually at each downstream gauge. We also test the feasibility of using transfer functions (which transform reservoir and catchment attributes into operating rule parameters) to identify a nationally consistent calibration. This works well in ∼ 50 % of the catchments, while nuances in individual reservoir operations limit performance in others. We suggest that our approach should provide a lower benchmark for simulations in catchments containing water supply reservoirs and that more complex methods should only be considered where they outperform our simple approach.

Funder

Natural Environment Research Council

UK Research and Innovation

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3