Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
-
Published:2024-06-04
Issue:11
Volume:28
Page:2343-2355
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Zhang Shaojie, Lei Xiaohu, Yang Hongjuan, Hu KaihengORCID, Ma Juan, Liu Dunlong, Wei Fanqiang
Abstract
Abstract. A larger antecedent effective precipitation (AEP) indicates a higher probability of a debris flow (Pdf) being triggered by subsequent rainfall. Scientific topics surrounding this qualitative conclusion that can be raised include what kinds of variation rules they follow and whether there is a boundary limit. To answer these questions, Jiangjia Gully in Dongchuan, Yunnan Province, China, is chosen as the study area, and numerical calculation, a rainfall scenario simulation, and the Monte Carlo integration method have been used to calculate the occurrence probability of debris flow under different AEP conditions and derive the functional relationship between Pdf and AEP. The relationship between Pdf and AEP can be quantified by a piecewise function. Pdf is equal to 15.88 %, even when AEP reaches 85 mm, indicating that debris flow by nature has an extremely small probability compared to the rainfall frequency. Data from 1094 rainfall events and 37 historical debris flow events are collected to verify the reasonability of the functional relationship. The results indicate that the piecewise functions are highly correlated with the observation results. Our study confirms the correctness of the qualitative description of the relationship between AEP and Pdf, clarifies that debris flow is a small-probability event compared to rainfall frequency, and quantitatively reveals the evolution law of debris flow occurrence probability with AEP. All the above discoveries can provide a clear reference for the early warning of debris flows.
Funder
National Key Research and Development Program of China West Light Foundation, Chinese Academy of Sciences National Natural Science Foundation of China Science and Technology Department of Sichuan Province
Publisher
Copernicus GmbH
Reference60 articles.
1. Abraham, M. T., Satyam, N., Pradhan, B., and Alamri, A. M.: Forecasting of landslides using rainfall severity and soil wetness: A probabilistic approach for Darjeeling Himalayas, Water (Switzerland), 12, 1–19, 2020. 2. Abraham, M. T., Satyan, N., Rosi, A., Pradhan, B., and Segoni, S.: Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning, Catena, 200, 105147, https://doi.org/10.1016/j.catena.2021.105147, 2021. 3. Adams, B., Fraser, H., Howard, C., and Hanafy, M.: Meteorological data analysis for drainage system design, J. Environ. Eng., 112, 827–848, https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(827), 1986. 4. Albert, G. E.: A general theory of stochastic estimates of the Neumann series for solution of certain Fredholm integral equations and related series, in: Symposium of Monte Carlo Methods, edited by: Meyer, M. A., Wiley, New York, https://www.osti.gov/servlets/purl/4427633 (last access: 29 May 2024), 1956. 5. Bel, C., Liébault, F., Navratil O., Eckert N., Bellot H., Fontaine, F., and Laigle, D.: Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealphs, 291, 17–32, 2017.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|