Real-time biological early-warning system based on freshwater mussels’ valvometry data

Author:

Pilbala AshkanORCID,Riccardi NicolettaORCID,Benistati NinaORCID,Modesto VanessaORCID,Termini Donatella,Manca Dario,Benigni Augusto,Corradini Cristiano,Lazzarin TommasoORCID,Moramarco TommasoORCID,Fraccarollo LuigiORCID,Piccolroaz SebastianoORCID

Abstract

Abstract. Quantifying the effects of external climatic and anthropogenic stressors on aquatic ecosystems is an important task for scientific purposes and management progress in the field of water resources. In this study, we propose an innovative use of biotic communities as real-time indicators, which offers a promising solution to directly quantify the impact of these external stressors on the aquatic ecosystem health. Specifically, we investigated the influence of natural river floods on riverine biotic communities using freshwater mussels (FMs) as reliable biosensors. Using the valvometry technique, we monitored the valve gaping of FMs and analysed both the amplitude and frequency. The valve movement of the FMs was tracked by installing a magnet on one valve and a Hall effect sensor on the other valve. The magnetic field between the magnet and the sensor was recorded using an Arduino board, and its changes over time were normalised to give the opening percentage of the FMs (how open the mussels were). The recorded data were then analysed using continuous wavelet transform (CWT) analysis to study the time-dependent frequency of the signals. The experiments were carried out both in a laboratory flume and in the Paglia River (Italy). The laboratory experiments were conducted with FMs in two configurations: freely moving on the bed and immobilised on vertical rods. Testing of the immobilised configuration was necessary because the same configuration was used in the field in order to prevent FMs from packing against the downstream wall of the protection cage during floods or from breaking their connection wires. These experiments allowed us to verify that immobilised mussels show similar responses to abrupt changes in flow conditions as free mussels. Moreover, immobilised mussels produced more neat and interpretable signals than free-moving mussels due to the reduced number of features resulting from movement constraints. We then analysed the response of 13 immobilised mussels under real river conditions during a flood on 31 March 2022. The FMs in the field showed a rapid and significant change in valve gap frequency as the flood escalated, confirming the general behaviour observed in the laboratory in the presence of an abrupt increase in the flow. These results highlight the effectiveness of using FMs as biosensors for the timely detection of environmental stressors related to natural floods and emphasise the utility of CWT as a powerful signal-processing tool for the analysis of valvometry data. The study proposes the integration of FM valvometry and CWT for the development of operational real-time biological early-warning systems (BEWSs) with the aim of monitoring and protecting aquatic ecosystems. Future research should focus on extending the investigation of the responsiveness of FMs to specific stressors (e.g. turbidity, temperature, and chemicals) and on testing the applications of the proposed BEWSs to quantify the impact of both natural stressors (e.g. heat waves and droughts) and anthropogenic stressors (e.g. hydropeaking, reservoir flushing, and chemical contamination).

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3