A high-resolution map of diffuse groundwater recharge rates for Australia
-
Published:2024-04-17
Issue:7
Volume:28
Page:1771-1790
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Lee StephenORCID, Irvine Dylan J.ORCID, Duvert Clément, Rau Gabriel C.ORCID, Cartwright IanORCID
Abstract
Abstract. Estimating groundwater recharge rates is important to understand and manage groundwater. Numerous studies have used collated recharge datasets to understand and project regional- or global-scale groundwater recharge rates. However, recharge estimation methods all have distinct assumptions, quantify different recharge components and operate over different temporal scales. We use over 200 000 groundwater chloride measurements to estimate groundwater recharge rates using an improved chloride mass balance (CMB) method across Australia. Groundwater recharge rates were produced stochastically using gridded chloride deposition, runoff and precipitation datasets. After filtering out groundwater recharge rates where the assumptions of the method may have been compromised, 98 568 estimates of recharge were produced. The resulting groundwater recharge rates and 17 spatial datasets were integrated into a random forest regression algorithm, generating a high-resolution (0.05°) model of groundwater recharge rates across Australia. The regression reveals that climate-related variables, including precipitation, rainfall seasonality and potential evapotranspiration, exert the most significant influence on groundwater recharge rates, with vegetation (the normalised difference vegetation index or NDVI) also contributing significantly. Importantly, the mean values of both the recharge point dataset (43.5 mm yr−1) and the spatial recharge model (22.7 mm yr−1) are notably lower than those reported in previous studies, underscoring the prolonged timescale of the CMB method, the potential disparities arising from distinct recharge estimation methodologies and limited averaging across climate zones. This study presents a robust and automated approach to estimate recharge using the CMB method, offering a unified model based on a single estimation method. The resulting datasets, the Python script for recharge rate calculation and the spatial recharge models collectively provide valuable insights for water resource management across the Australian continent, and similar approaches can be applied globally.
Funder
Cooperative Research Centre for Developing Northern Australia
Publisher
Copernicus GmbH
Reference87 articles.
1. Baudron, P., Alonso-Sarría, F., García-Aróstegui, J. L., Cánovas-García, F., Martínez-Vicente, D., and Moreno-Brotóns, J.: Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification, J. Hydrol., 499, 303–315, https://doi.org/10.1016/j.jhydrol.2013.07.009, 2013. 2. Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. 3. Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y., and Allen, S. T.: Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes, Geophys. Res. Lett., 49, e2002GL099010, https://doi.org/10.1029/2022GL099010, 2022. 4. Bowen, B. B. and Benison, K. C.: Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia, Appl. Geochem., 24, 268–284, https://doi.org/10.1016/j.apgeochem.2008.11.013, 2009. 5. Broad, M.: Using Groundwater Age to Inform Aquifer Sustainability, Unpublished Honours Thesis, Flinders University, Adelaide, 2020.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|